CIVIL ENGINEERING, BACHELOR OF SCIENCE

The Department of Civil Engineering offers a complete undergraduate program to University of Nebraska students on City Campus in Lincoln and Scott Campus in Omaha. Curriculum requirements are nearly identical on both campuses. The goal is to prepare students for entry into the civil engineering profession immediately after graduation or to pursue graduate-level studies.

Website (https://engineering.unl.edu/civil)

The general educational objectives of the University of Nebraska—Lincoln (UNL) civil engineering undergraduate program are to prepare our graduates so that, with a UNL BSCE degree, a few years beyond graduation, alumni will:

- APPLY their solid foundation in civil engineering toward the practice and to obtain an advanced-degree education toward a broad range of career choices;
- PERFORM technical analysis or design of a complex system, component or process as acting representative of governmental agencies, private consulting engineering firms, research organizations or industry;
- EXPLAIN engineering concepts accurately and effectively to inform technical and non-technical audiences using appropriate verbal, written, virtual and graphical means;
- APPLY basic project management and business concepts and processes;
- ENGAGE in lifelong learning to foster technical growth, ethical conduct, and the practice of professional communication, teamwork and leadership skills; and
- OBTAIN licensure in a profession, such as civil engineering, after the requisite number of years of practice.

As a professional discipline, civil engineering is closely related to the total human environment. In all professional endeavors, the civil engineer must consider ecological effects as well as the social, economic, and political needs of people. The civil engineer designs systems to control and manage our water resources to provide electric power, agricultural irrigation, flood control, recreation, water and wastewater treatment systems for our urban and industrial needs.

The civil engineer plans, designs, and constructs our transportation systems including highways, railroads, waterways, and airports to connect rural, urban, and industrial areas. The civil engineer also designs and constructs housing and facilities for recreational, industrial, and commercial complexes, which comprise the urban environment. It is the responsibility of civil engineering to minimize air, water, and land pollution and protect the environment.

Instructional emphasis is placed on fundamental engineering principles derived from mathematics, chemistry, physics, and engineering science. These subjects provide a sound background for the subsequent introductory courses in environmental, geotechnical, structural, transportation, and water resources engineering. Students are introduced to design concepts in the freshman year. Design is incorporated throughout the curriculum which culminates in CIVE 489, Senior Design Project.

Instructional laboratories in environmental engineering, hydraulics, geotechnical engineering, structures, and surveying provide each student with an opportunity to learn, through individual participation, the operation of the testing equipment used to establish engineering design criteria and to monitor and model engineering facilities such as water and wastewater treatment plants, highway systems, river control systems, and structural systems.

Some students may desire to obtain a degree in construction management in addition to the degree in civil engineering. Because some civil engineering courses require prerequisites beyond those required for similar construction management courses, students should obtain the civil engineering degree first. Advising will be done by a civil engineering faculty member familiar with the construction management curriculum. After completing the civil engineering degree, the student will move to the construction management department to complete requirements for the second undergraduate degree in construction management.

The Departments of Civil Engineering and Architecture have a joint program awarding licensing degrees in both fields of study. A bachelor's degree in civil engineering and masters degree in architecture are awarded, after approximately seven years of study. The departments work with individual students in tailoring a joint degree program. More information can be obtained from either department office.

Learning Outcomes
Graduates of the civil engineering program will have:

1. An ability to apply knowledge of mathematics, science, and engineering.
 (a)
2. An ability to design and conduct experiments, as well as to analyze and interpret data. (b)
3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety. (c)
4. An ability to function on multidisciplinary teams. (d)
5. An ability to identify, formulate, and solve engineering problems. (e)
6. An understanding of professional and ethical responsibility. (f)
7. An ability to communicate effectively. (g)
8. The broad educational necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context. (h)
9. A recognition of the need for, and an ability to engage in life-long learning. (i)
10. A knowledge of contemporary issues. (j)
11. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. (k)

NOTE: Letters are references to ABET Engineering Accreditation Commission outcomes (a through k).

Professional Admission to Civil Engineering
Students must apply for Professional Admission to the Civil Engineering Degree Program once they have completed 43 credits toward the degree. Once students have been professionally admitted, they are allowed to take 400-level courses to complete their degree. Department-specific Professional Admission requirements are:

- if the cumulative GPA is 2.7 or above, a grade of C or better must be earned in PHYS 2110, MENG 2230, MENG 3730, and MENG 3250
- if the cumulative GPA is below 2.7 a grade of C or better must be earned in all math, science, and engineering courses leading to the degree

To be considered for Professional Admission, the following College of Engineering general criteria must be met:

- completion of at least 12 credits (one semester) after admission to the College of Engineering,
- cumulative grade point average of 2.4 or greater, and
- no more than two declined admission requests to other engineering majors.
Requirements
(City Campus in Lincoln and Scott Campus in Omaha)

Degree Requirements - 130 hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1950</td>
<td>CALCULUS I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 1180</td>
<td>GENERAL CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1184</td>
<td>GENERAL CHEMISTRY I LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>CIVE 112</td>
<td>INTRODUCTION TO CIVIL ENGINEERING</td>
<td>1</td>
</tr>
<tr>
<td>CIST 1400</td>
<td>INTRODUCTION TO COMPUTER SCIENCE I</td>
<td>3</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Second Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1960</td>
<td>CALCULUS II</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 2110</td>
<td>GENERAL PHYSICS I - CALCULUS LEVEL</td>
<td>4</td>
</tr>
<tr>
<td>CMST 1110</td>
<td>PUBLIC SPEAKING FUNDS</td>
<td>3</td>
</tr>
<tr>
<td>Computer Aided Design</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Third Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1970</td>
<td>CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2120</td>
<td>GENERAL PHYSICS-CALCULUS LEVEL</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 221/CONE 2210</td>
<td>GEOMETRIC CONTROL SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 3980</td>
<td>TECHNICAL WRITING ACROSS THE DISCIPLINES</td>
<td>3</td>
</tr>
<tr>
<td>MENG 2230</td>
<td>ENGINEERING STATICS</td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Fourth Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2350</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 361</td>
<td>HIGHWAY ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>MENG 3250</td>
<td>MECHANICS OF ELASTIC BODIES</td>
<td>3</td>
</tr>
<tr>
<td>MENG 3730</td>
<td>ENGINEERING DYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>Professional Development Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Fifth Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 3800</td>
<td>APPLIED ENGINEERING PROBABILITY AND STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 310/ MENG 3100</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CIVE 319</td>
<td>HYDRAULICS LAB</td>
<td>1</td>
</tr>
<tr>
<td>CIVE 326</td>
<td>INTRODUCTION TO ENVIRONMENTAL ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 327</td>
<td>ENVIRONMENTAL ENGINEERING LABORATORY</td>
<td>1</td>
</tr>
<tr>
<td>CIVE 341</td>
<td>INTRODUCTION TO STRUCTURAL ENGINEERING</td>
<td>4</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Sixth Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 378</td>
<td>MATERIALS OF CONSTRUCTION</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 334</td>
<td>INTRODUCTION TO GEOTEchnICAL ENGINEERING</td>
<td>4</td>
</tr>
<tr>
<td>CIVE 352</td>
<td>INTRODUCTION TO WATER RESOURCES ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 385</td>
<td>PROFESSIONAL PRACTICE AND MANAGEMENT IN CIVIL ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CIVE Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Seventh Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CIVE Design electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ACE Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Eighth Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVE 489</td>
<td>SENIOR DESIGN PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>Design Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ACE Electives</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Credits</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

1. ACE elective: Choose one course from each ACE Student Learning Outcome (SLO) 5,6,7,8 and 9 elective courses.
2. Computer Aided Design: AE 2250 or equivalent.
3. PHYS 2120: CHEM 1190 & CHEM 1194 is an acceptable substitute.
4. CIVE 221: CONE 2210 is acceptable substitute.
5. ENGL 3980: ENGR 3000 is acceptable substitute.
6. Professional Development Elective: The Department has a list of acceptable courses.
7. Technical elective: The department has a list of acceptable courses.

CIVE Design Electives

CIVE Design Electives: Nine (9) credits must be taken from courses designated as Design Electives. CIVE Design electives must be taken from at least two sub-disciplines.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 419</td>
<td>FLOW SYSTEMS DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 425</td>
<td>PROCESS DESIGN IN WATER SUPPLY AND WASTEWATER TREATMENT</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 426</td>
<td>DESIGN OF WATER TREATMENT FACILITIES</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 427</td>
<td>DESIGN OF WASTEWATER TREATMENT AND DISPOSAL FACILITIES</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 436</td>
<td>FOUNDATION ENGINEER</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 440</td>
<td>REINFORCED CONCRETE DESIGN I</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 441</td>
<td>STEEL DESIGN I</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 452</td>
<td>WATER RESOURCES DEVELOPMENT</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 462</td>
<td>HIGHWAY DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 463</td>
<td>TRAFFIC ENGINEERING</td>
<td>3</td>
</tr>
</tbody>
</table>

Civil Engineering Technical Electives

Technical Electives: Technical electives will be selected by the student in consultation with his/her adviser to formulate a coherent program in civil engineering. Two technical electives (up to six credits) can be taken from MENG 2000, ECEN 2110, CONE 2060 or any approved course in science, mathematics, or other engineering areas approved by the department. The department has an approved list.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 421</td>
<td>HAZARDOUS WASTE MANAGEMENT AND TREATMENT</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 422</td>
<td>POLLUTN PREVENTN:PRINC & PRACT</td>
<td>3</td>
</tr>
<tr>
<td>CIVE 424</td>
<td>SOLID WASTE MANAGEMENT ENGINEERING</td>
<td>3</td>
</tr>
</tbody>
</table>
CIVE 430 FUNDAMENTALS OF WATER QUALITY MODELING 3
CIVE 431 SMALL TREATMENT SYSTEMS 3
CIVE 432 BIOREMEDIATION OF HAZARDOUS WASTES 3
CIVE 434 SOIL MECHANICS II 3
CIVE 439 INTRODUCTION TO BRIDGE ENGINEERING 3
CIVE 443 ADVANCED STRUCTURAL ANALYSIS 3
CIVE 444 STRUCTURAL DESIGN AND PLANNING 3
CIVE 446 STEEL DESIGN II 3
CIVE 447 REINFORCED CONCRETE II 3
CIVE 451 INTRODUCTION TO FINITE ELEMENT ANALYSIS 3
CIVE 452 WATER RESOURCES DEVELOPMENT 3
CIVE 454 HYDRAULIC ENGINEERING 3
CIVE 455 NONPOINT POLLUTION 3
CIVE 456 SURFACE WATER HYDROLOGY 3
CIVE 458 GROUNDWATER ENGINEERING 3
CIVE 459 RELIABILITY OF STRUCTURES 3
CIVE 461 URBAN TRANSPORTATION PLANNING 3
CIVE 468 AIRPORT PLANNING AND DESIGN 3
CIVE 469 COMPUTER-AIDED INTERCHANGE DESIGN 3
CIVE 472 PAVEMENT DESIGN AND EVALUATION 3
CIVE 475 WATER QUALITY STRATEGY 3
CIVE 481 COMPUTATIONAL PROBLEM SOLVING IN CIVIL ENGINEERING 3
CIVE 498 SPECIAL TOPICS IN CIVIL ENGINEERING 1-6

For more information, call 402-554-2462 or visit www.engineering.unl.edu/civil/ (http://www.engineering.unl.edu/civil)

CIVE 112 INTRODUCTION TO CIVIL ENGINEERING (1 credit)
Introduction to civil engineering as a career by use of case studies; alternate approaches to engineering designs illustrated by use of engineering principles.

CIVE 125 ECOLOGY, THE ENVIRONMENT AND THE ENGINEER (3 credits)
Investigation into the nature of ecology, man's relation with the environment and man's chance of survival in that environment, and the potential influence, for good or bad, of modern man's activities.

CIVE 130 COMPUTER-AIDED DESIGN (2 credits)
Use of computer-aided design software to communicate engineering ideas. Specifications, dimensioning, tolerancing, 2- and 3-D model development, topographic mapping, and process layout with environmental, bioprocess, and biomedical emphases.
Prerequisite(s)/Corequisite(s): CIVE112, not open to nondegree students

CIVE 221 GEOMETRIC CONTROL SYSTEMS (3 credits)
Introduction to the theory and application of mensuration and geometric information processing in civil engineering. Measurement of distance, direction, elevation and location using mechanical, electronic and satellite systems; collection of field data, error propagation; elementary geometric data bases for design, construction, operation and control of civil works. (Cross-listed with CONE 2210).
Prerequisite(s)/Corequisite(s): MATH1950, not open to nondegree students

CIVE 252 CONSTRUCTION MATERIALS LAB (1 credit)
Introduction to ASTM and AASHTO standard procedures used to measure soil and concrete properties; common modifications to soil and concrete mixes are discussed and analyzed.
Prerequisite(s)/Corequisite(s): MATH1950 and CNST2510 coreq

CIVE 310 FLUID MECHANICS (3 credits)
Fluid statics, equations of continuity, momentum, and energy; dimensional analysis and dynamic similitude. Applications to: flow meters; fluid pumps and turbines; viscous flow and lubrication; flow in closed conduits and open channels. Two-dimensional potential flow.
Prerequisite(s)/Corequisite(s): MATH 2350; and MENG 3730 or EMEC 3730; MENG 2000 coreq. Not open to non-degree graduate student.

CIVE 319 HYDRAULICS LAB (1 credit)
Hydraulic experiments and demonstrations. Velocity, pressure and flow measurements; pipe flow, open channel flow; hydraulic structures and machinery, hydrologic and sediment measurement and student projects.
Prerequisite(s)/Corequisite(s): CIVE310 pre/coreq

CIVE 326 INTRODUCTION TO ENVIRONMENTAL ENGINEERING (3 credits)
Introduction to the principles of environmental engineering, including water quality, atmospheric quality, pollution prevention, and solid and hazardous wastes engineering. Design of water, air, and waste management systems.
Prerequisite(s)/Corequisite(s): MATH 2350, and CHEM 1180 and CHEM 1184, or CHEM 1190 and CHEM 1194

CIVE 327 ENVIRONMENTAL ENGINEERING LABORATORY (1 credit)
Environmental engineering experiments, demonstrations, field trips, and projects. Experiments include the measurement and determination of environmental quality parameters such as solids, dissolved oxygen, biochemical and chemical oxygen demand, and alkalinity.
Prerequisite(s)/Corequisite(s): Pre or Coreq: CIVE 326.

CIVE 328 CONCRETE MATERIALS (2 credits)
Prerequisite(s)/Corequisite(s): MENG 2230 and CHEM 1180. Not open to non-degree graduate students.

CIVE 334 INTRODUCTION TO GEOTECHNICAL ENGINEERING (4 credits)
Soil composition, structure and phase relationships; soil classification. Principles of effective stress; loading induced subsurface stresses; load history; deformation and failure of soils. Elastic and limit analysis with applications to design for bearing capacity, settlement, retaining walls and slope stability. Steady state seepage.
Prerequisite(s)/Corequisite(s): EMEC 3250 or MENG 3250; Coreq: CIVE 310.

CIVE 341 INTRODUCTION TO STRUCTURAL ENGINEERING (4 credits)
Introduction to the analysis and design of structural systems. Analyses of determinate and indeterminate trusses, beams, and frames are covered, and design philosophies for structural engineering are explored. Laboratory experiments deal with the analysis of determinate and indeterminate structures.
Prerequisite(s)/Corequisite(s): MENG 3250 or EMEC3250

CIVE 352 INTRODUCTION TO WATER RESOURCES ENGINEERING (3 credits)
Introduction to water resources engineering design and planning, surface hydrology, groundwater hydrology, reservoirs and other control structures. Introduction to field measurement and computational methods in water resources.
Prerequisite(s)/Corequisite(s): CIVE310 or MENG3100

CIVE 361 HIGHWAY ENGINEERING (3 credits)
Introduction to the principles of highway engineering and traffic operations and control.
Prerequisite(s)/Corequisite(s): MENG 2230 or EMEC 2230; and CIVE 221 or CONE 2210.
CIVE 378 MATERIALS OF CONSTRUCTION (3 credits)
(Lect 2, Lab 2) Introduction to the behavior, testing and design of soil, Portland cement concrete, steel, wood and composites. Experiments covering the concepts of stress and strain under axial, torsional, shear and flexural loading conditions. Common ASTM laboratory test procedures and specifications, field quality control tests and statistical applications.
Prerequisite(s)/Corequisite(s): MENG 3250 or EMEC3250
CIVE 385 PROFESSIONAL PRACTICE AND MANAGEMENT IN CIVIL ENGINEERING (3 credits)
Basic elements of civil engineering practice. Roles of all participants in the process-owners, designers, architects, contractors, and suppliers. Basic concepts in business management, public policy, leadership, and professional licensure. Professional relations, civic responsibilities, and ethical obligations for engineering practice. Project management, contracts, allocation of resources, project estimating, planning, and controls.
Prerequisite(s)/Corequisite(s): Junior standing and CIVE major. Not open to non-degree graduate students.
CIVE 401 CIVIL ENGINEERING SYSTEMS (3 credits)
Systems analysis approach to civil engineering problems. System model elements and principles of systems theory with applications to civil engineering. (Cross-listed with CIVS801)
Prerequisite(s)/Corequisite(s): MATH2350
CIVE 419 FLOW SYSTEMS DESIGN (3 credits)
Application of hydraulic principles to the design of water distribution systems, wastewater and stormwater collection systems, channelized flow systems and treatment facilities. (Cross-listed with CIVE 819)
Prerequisite(s)/Corequisite(s): CIVE 326 or CIVE 327; CIVE 352 coreq.
CIVE 421 HAZARDOUS WASTE MANAGEMENT AND TREATMENT (3 credits)
Survey of the hazardous waste management system in the USA. State and federal hazardous waste regulations. Chemical characteristics of hazardous waste and unit operations and processes used for treatment of soil, water, and air. (Cross-listed with CIVE 821).
Prerequisite(s)/Corequisite(s): CIVE326, not open to nondegree students
CIVE 422 POLLUTN PREVENTN:PRINC & PRACT (3 credits)
Introduction to pollution prevention (P2) and waste minimization methods. Practical applications to small businesses and industries. Legislative and historical development of P2 systems analysis, waste estimation, P2 methods, P2 economics, and sources of P2 information. (Cross-listed with CIVE 822.)
CIVE 424 SOLID WASTE MANAGEMENT ENGINEERING (3 credits)
Planning design and operation of solid waste collection processing, treatment, and disposal systems including materials, resources and energy recovery systems. (Cross-listed with CIVE 824).
Prerequisite(s)/Corequisite(s): CIVE 326 and CIVE 334
CIVE 425 PROCESS DESIGN IN WATER SUPPLY AND WASTEWATER TREATMENT (3 credits)
(Lec 3) Design of unit operations and processes associated with drinking water and wastewater treatment facilities.
Prerequisite(s)/Corequisite(s): CIVE 326 and CIVE 310
CIVE 426 DESIGN OF WATER TREATMENT FACILITIES (3 credits)
Analyses of water supplies and design of water treatment and distribution systems. (Cross-listed with CIVE 826).
Prerequisite(s)/Corequisite(s): CIVE425
CIVE 427 DESIGN OF WASTEWATER TREATMENT AND DISPOSAL FACILITIES (3 credits)
Analysis of systems for wastewater treatment and disposal. (Cross-listed with CIVE 827).
Prerequisite(s)/Corequisite(s): CIVE425
CIVE 430 FUNDAMENTALS OF WATER QUALITY MODELING (3 credits)
A comprehensive study of water quality and the effects of various water pollutants on the aquatic environment; modeling of water quality variables. (Cross-listed with CIVE 830).
Prerequisite(s)/Corequisite(s): CIVE 326
CIVE 431 SMALL TREATMENT SYSTEMS (3 credits)
Design of small and decentralized waste water management systems. (Cross-listed with CIVE 831)
Prerequisite(s)/Corequisite(s): CIVE 326 or permission. Not open to non-degree graduate students.
CIVE 432 BIOREMEDIATION OF HAZARDOUS WASTES (3 credits)
Principles, applications, and limitations of bioremediation of hazardous wastes and design of some bioremediation systems.
Prerequisite(s)/Corequisite(s): CIVE326 and (CIVE310 or MENG3100), not open to nondegree students
CIVE 434 SOIL MECHANICS II (3 credits)
(Lecture 3, option Lab 3) Application of the effective stress principle to shear strength of cohesive soils; analysis of stability of slopes. Development of continuum relationships for soils; solutions for stresses and displacements for an elastic continuum, solution of the consolidation equation for various initial and boundary conditions. (Cross-listed with CIVE834)
Prerequisite(s)/Corequisite(s): CIVE334
CIVE 436 FOUNDATION ENGINEER (3 credits)
(Lecture 3, Optional Lab 3) Subsoil exploration and interpretation; selection of foundation systems; determination of allowable bearing capacity and settlement; design of deep foundations; pile driving analysis; control of groundwater. (Cross-listed with CIVE836)
Prerequisite(s)/Corequisite(s): CIVE334
CIVE 439 INTRODUCTION TO BRIDGE ENGINEERING (3 credits)
Structural types, bridge loads, design of bridge slabs, steel girder bridges, and prestressed concrete girder bridges. Evaluation of existing bridges. Problems related to fatigue and corrosion. Field testing of bridges. (Cross-listed with CIVE839)
Prerequisite(s)/Corequisite(s): CIVE440 or CIVE441 or CIVE840
CIVE 440 REINFORCED CONCRETE DESIGN I (3 credits)
Introduction to the design of reinforced concrete building components. Emphasis is placed on the design of flexural and compression members, simple walls, foundations, and floor systems using the latest ACI design requirements. (Cross-listed with CIVE840).
Prerequisite(s)/Corequisite(s): CIVE341
CIVE 441 STEEL DESIGN I (3 credits)
Introduction to the design concepts for structural steel building components. Design of tension members, bolted and welded connections, column members, and beam members are covered. Limit states design concepts are used throughout the course, and emphasis is placed on behavior of members and code design procedures.
Prerequisite(s)/Corequisite(s): CIVE341
CIVE 443 ADVANCED STRUCTURAL ANALYSIS (3 credits)
Matrix analysis methods and computer solutions for indeterminate structures. Additional topics: static condensation, shear deformation, and non-prismatic members in matrix-based analyses, moment distribution method, load cases and load combinations for buildings and bridges, and influence lines and analysis for moving loads. (Cross-listed with CIVE 843)
Prerequisite(s)/Corequisite(s): CIVE 341. Not open to non-degree graduate students.
CIVE 444 STRUCTURAL DESIGN AND PLANNING (3 credits)
(Lect 2, Lab 2) Principles of design of steel and reinforced concrete structural building systems, planning of building vertical and horizontal load resisting systems, and bridge systems. Several design projects involve indeterminate analysis and design concepts for both steel and reinforced concrete. (Cross-listed with CIVE 844).
Prerequisite(s)/Corequisite(s): CIVE 440 and CIVE 441
CIVE 446 STEEL DESIGN II (3 credits)
A continuation of CIVE 441. The principles and procedures used in design of steel buildings, design of plate girders, design and analysis of building systems, design and analysis of composite steel-concrete building systems, innovative building systems, and introduction to seismic design of steel buildings. Plate buckling, beam, column, and beam-column design. Frame stability. Introduction to connection design. (Cross-listed with CIVE846)
Prerequisite(s)/Corequisite(s): CIVE441

CIVE 447 REINFORCED CONCRETE II (3 credits)
Shear friction theory, strut-and-tie modeling, anchorage, deflection, slender and bi-axially loaded members, torsion, two-way action and punching shear, and footing design. Excel spreadsheets are developed and used for various designs. (Continuation of topics covered in CIVE 440/CIVE 840.) (Cross-listed with CIVE 847).
Prerequisite(s)/Corequisite(s): CIVE 440 or CIVE 840

CIVE 451 INTRODUCTION TO FINITE ELEMENT ANALYSIS (3 credits)
Matrix methods of analysis. The finite element stiffness method. Computer programs. Applications to structures and soils. Introduction to finite element analysis of fluid flow. (Cross-listed with CIVE851)
Prerequisite(s)/Corequisite(s): MENG 3250 or EMEC 3250; and MENG 4800 or EMEC 4800.

CIVE 452 WATER RESOURCES DEVELOPMENT (3 credits)
Theory and application of systems engineering with emphasis on optimization and simulation techniques for evaluating alternatives in water resources developments related to water supply, flood control, hydroelectric power, drainage, water quality, water distribution, irrigation and water measurement. (Cross-listed with CIVE 852).
Prerequisite(s)/Corequisite(s): CIVE 352

CIVE 454 HYDRAULIC ENGINEERING (3-4 credits)
(Lecture 2-3, Lab 0-3) Fundamentals of hydraulics with applications of mechanics of solids, mechanics of fluids; engineering economics to the design of hydraulic structures, continuity, momentum; energy principles are applied to special problems from various branches of hydraulic engineering. (Cross-listed with CIVE 854).
Prerequisite(s)/Corequisite(s): CIVE352

CIVE 455 NONPOINT POLLUTION (3 credits)
Identification, characterization, and assessment of nonpoint source pollutants; transport mechanisms and remediation technologies; design methodologies and case studies. (Cross-listed with CIVE855)
Prerequisite(s)/Corequisite(s): CIVE326 and CIVE352

CIVE 456 SURFACE WATER HYDROLOGY (3 credits)
Stochastic analysis of hydrological data and processes including rainfall, runoff, infiltration, temperature, solar radiation, wind, and non-point pollution. Space-time hydrologic modeling with emphasis on the application of techniques in the design of engineering projects. (Cross-listed with CIVE 856).
Prerequisite(s)/Corequisite(s): CIVE 352 or permission

CIVE 458 GROUNDWATER ENGINEERING (3 credits)
The application of engineering principles to the movement of groundwater. The influence of the physical and geologic environment on ground water hydraulics, water well hydraulics and aquifer evaluation. Emphasis is placed on practical groundwater engineering problems. (Cross-listed with CIVE 858).
Prerequisite(s)/Corequisite(s): CIVE352

CIVE 459 RELIABILITY OF STRUCTURES (3 credits)
Fundamental concepts related to structural reliability, safety measures, load models, resistance models, system reliability, optimum safety levels, and optimization of design codes.
Prerequisite(s)/Corequisite(s): CIVE 341. Not open to nondegree students.

CIVE 461 URBAN TRANSPORTATION PLANNING (3 credits)
Development of urban transportation planning objectives and goals. Data collection procedures, land use and travel forecasting techniques, trip generation, trip distribution, modal choice analysis, and traffic assignment. Site development and traffic impact analysis. (Cross-listed with CIVE 861).
Prerequisite(s)/Corequisite(s): CIVE 361

CIVE 462 HIGHWAY DESIGN (3 credits)
Design of roadways, intersections, interchanges, parking facilities, and land development site access and circulation. Emphasis on design projects. (Cross-listed with CIVE862)
Prerequisite(s)/Corequisite(s): CIVE361

CIVE 463 TRAFFIC ENGINEERING (3 credits)
Design of signalized intersections, arterial street and network signal systems, and freeway control systems. Emphasis on design projects. (Cross-listed with CIVE863)
Prerequisite(s)/Corequisite(s): CIVE361

CIVE 468 AIRPORT PLANNING AND DESIGN (3 credits)
Planning and design of general aviation and air-carrier airports. Land-side components include vehicle ground access systems, vehicle circulation parking and terminal buildings. Air-side components include airport apron-gate area, taxiway system, runway system and air traffic control facilities and airspace. Emphasis on design projects. (Cross-listed with CIVE868)
Prerequisite(s)/Corequisite(s): CIVE361

CIVE 469 COMPUTER-AIDED INTERCHANGE DESIGN (3 credits)
Principles of high-speed traffic operations, safety, and decision making related to critical design parameters used for optimal interchange geometric design through development of an interchange design project using graphical and civil engineering software. (Cross-listed with CIVE869)
Prerequisite(s)/Corequisite(s): CIVE 462. Not open to non-degree graduate students.

CIVE 471 BITUMINOUS MATERIALS AND MIXTURES (3 credits)
Understanding of the physical, chemical, geometrical, and mechanical characteristics and practical applications of bituminous materials and mixtures. Fundamental mechanics for elastic and inelastic materials and basic theories associated with mechanical data analyses and designs. Recent advances and significant research outcomes for further discussions. Applications of theories to laboratory and field testing. (Cross-listed with CIVE 871)
Prerequisite(s)/Corequisite(s): CIVE 378. Not open to non-degree graduate students.

CIVE 472 PAVEMENT DESIGN AND EVALUATION (3 credits)
Thickness design of flexible and rigid pavement systems for highways and airports; design of paving materials; evaluation and strengthening of existing pavements. (Cross-listed with CIVE 872).
Prerequisite(s)/Corequisite(s): CIVE 334

CIVE 475 WATER QUALITY STRATEGY (3 credits)
Holistic approach to the selection and analysis of planning strategies for protecting water quality from nonpoint sources of contamination. Introduction to the use of methods of analyzing the impact of strategies on whole systems and subsystems for selecting strategies; and for evaluating present strategies.
Prerequisite(s)/Corequisite(s): Senior standing, not open to nondegree students

CIVE 476 CONSTRUCTION COST CONTROLS (3 credits)
Development of cost accounting principles and financial controls appropriate for construction contractors. Includes purchasing policies and procedure, labor and equipment cost reporting techniques, accounting procedures for control of materials and supplies, billing methods, principles of financial reporting and analysis.
Prerequisite(s)/Corequisite(s): ACCT 2010 and ACCT 2020.
CIVE 481 COMPUTATIONAL PROBLEM SOLVING IN CIVIL ENGINEERING (3 credits)
Introduction of numerical methods to solve problems in civil engineering, including finding roots of equations, solving linear algebra equations, optimization, curve fitting, numerical differentiation and integration, and finite difference method. Computational methods in numerical integration, matrix operations and ordinary differential equations as they apply to civil engineering problems. (Cross-listed with CIVE 881)
Prerequisite(s)/Corequisite(s): Not open to non-degree graduate students.

CIVE 489 SENIOR DESIGN PROJECT (3 credits)
Requires the formulation and completion of a civil engineering design project. Course provides senior civil engineering students with the opportunity to apply engineering concepts and principles to a comprehensive design project of multiple sub-disciplinary nature. The principal objectives are for students to develop an understanding of the entire life-cycle of civil engineering projects with emphasis on the development of a unified and sustainable design that addresses the client's needs; project team work; strong engineer-client relationships; and effective project communications.
Prerequisite(s)/Corequisite(s): Senior standing and CIVE 385

CIVE 498 SPECIAL TOPICS IN CIVIL ENGINEERING (1-6 credits)
Special problems, topics, or research in civil engineering. (Cross-listed with CIVE 898).