BIOMEDICAL INFORMATICS

Degree Programs Offered

- Biomedical Informatics, MS (http://catalog.unomaha.edu/graduate-degree-programs-certificates-minors/biomedical-informatics/)
- Biomedical Informatics, PhD (http://catalog.unomaha.edu/graduate-degree-programs-certificates-minors/biomedical-informatics/)

BMI 8000 ADVANCES IN BIOMEDICAL INFORMATICS (0 credits)
BMI 8000 provides a regular forum for BMI graduate students, where the latest developments in the field of Biomedical Informatics are introduced and discussed. The course also functions as a central communication and collaboration hub for graduate students in BMI. Participation is required.
Prerequisite(s)/Corequisite(s): Students in the MS in BMI and PhD in BMI program may register. Not open to non-degree graduate students.

BMI 8020 ADVANCED COURSE IN BIOINFORMATICS (3 credits)
This is a special topics course designed to explore the research interests of faculty and students. Therefore, topics may include, but are not limited to, such areas of study as next-generational sequencing, biological networks, proteomics, metabolomics, and biomedical informatics.
Prerequisite(s)/Corequisite(s): Admission to the MS/PhD Program in the College of Information Science and Technology, or permission of the instructor. Not open to non-degree graduate students.

BMI 8080 SEMINAR IN BIOMEDICAL INFORMATICS (1-3 credits)
This is a variable-content course that engages students in current research in Biomedical Informatics and develops skills in the oral and written presentation of scientific research.
Prerequisite(s)/Corequisite(s): Permission of the instructor. Additional prerequisite courses may be required for particular course offerings.

BMI 8100 INTRODUCTION TO BIOMEDICAL INFORMATICS (3 credits)
This course offers students an overview of the field of biomedical informatics, combining perspectives from computing, biosciences and medicine. The historical development of the field and its influence on biological, clinical, and translational research will be discussed. Issues related to bioinformatics, clinical, bioimaging and public health/population informatics will be explored.
Prerequisite(s)/Corequisite(s): Class standing of senior or above.

BMI 8300 PUBLIC HEALTH GENOMICS (3 credits)
This course will address the biopsychosocial issues that bridge genomics and public health, which are generally considered two vastly different disciplines. The focus will center on understanding how genomics may be incorporated into health promotion and disease prevention efforts for individuals and population.
Prerequisite(s)/Corequisite(s): Class standing of senior or above.

BMI 8400 LINEAR ALGEBRA FOR ADVANCED COMPUTING AND AI (3 credits)
Matrix Analysis and Linear Algebra are at the core of several important algorithms and techniques that are widely used in machine learning for data analytics, imaging informatics, and bioinformatics. The course will explore fundamental concepts of matrix analysis and linear algebra as they apply to machine learning, emphasizing applications over proofs. Students will have an opportunity to perform "pencil and paper" calculations as well as more sophisticated numerical computations using a programming language/statistical environment of their choice. Applications of linear algebra to machine learning in the context of imaging informatics and biomedicine will be covered in depth.
Prerequisite(s)/Corequisite(s): Proficiency in programming and knowledge of calculus are required. Familiarity with concepts from biology is beneficial but not required.

BMI 8540 FOUNDATIONS IN PROGRAMMING FOR BIOMEDICAL INFORMATICS (3 credits)
Foundations in programming, software development, pipeline management, and version control are critical for developing a capable biomedical informatics workforce. This course will provide foundations in programming skills necessary for students with a limited computer science background to develop fluency and basic skills in the concepts of software development for biomedical informatics. Specific topics covered will include Unix/Linux shell programming, Python, databases, Applications Programming Interface (APIs), software versioning, and data management.
Prerequisite(s)/Corequisite(s): Experience with programming in a scripting, database management, or object-oriented programming language is strongly recommended but not required.

BMI 8850 BIOMEDICINE FOR THE NONMEDICAL PROFESSIONAL (3 credits)
This course will cover the basic principles of molecular and cellular biology, human anatomy, physiology, and pathology that are essential to an informed use of biomedical data. The biomedical topics will be interspersed and complemented with discussions about relevant data sources and datasets, emphasizing their strengths and weaknesses, and the lectures will be enriched with virtual anatomical dissections. Reading assignments from the primary literature and multimedia materials will supplement the textbook.
Prerequisite(s)/Corequisite(s): Class standing of senior or above.

BMI 8866 BIOINFORMATICS ALGORITHMS (3 credits)
The main objective of this course is to provide an organized forum for students to learn recent developments in Bioinformatics, particularly, from the algorithmic standpoint. The course will present basic algorithmic concepts in Bioinformatics and show how they are connected to molecular biology and biotechnology. Standard topics in the field such as restriction mapping, motif finding, sequence comparison, and database search will be covered. The course will also address problems related to Bioinformatics like next generation sequencing, DNA arrays, genome rearrangements and biological networks. (Cross-listed with BIOI 4860)
Prerequisite(s)/Corequisite(s): CSCI 3320 and BIOL 1450; Or permission of instructor.

BMI 8896 GENETIC SEQUENCE ANALYSIS (3 credits)
The goal of this course is to introduce students to major topics in computerized analysis of genetic sequences. In particular the course will allow students to become familiar with the computational tools and software that aid in the modern molecular biology experiments and analysis of experimental results. Following the completion of this course, it is expected that the students will have a basic understanding of the theoretical foundations of the sequence analysis tools and develop competence in evaluating the output from these tools in a biological context. This course will emphasize hands-on experience with the programs for nucleotide and amino acid sequence analysis and molecular phylogeny.
Prerequisite(s)/Corequisite(s): Permission from the instructor.
BMI 8900 INDEPENDENT RESEARCH IN BIOMEDICAL INFORMATICS
(1-3 credits)
The content of the course will vary, however both the student and the faculty
member must sign an Independent Research Agreement and file it with the
Biomedical Informatics Graduate Program Committee before registration
for the course. This agreement will detail the project, the schedule for its
completion, the form of the output, the method of evaluation and other
relevant information pertaining to the project.
Prerequisite(s)/Corequisite(s): Permission of instructor, and at least 12
hours of course work toward the MS BMI program should be completed.

BMI 8910 INTERNSHIP (1-3 credits)
The purpose of this course is to provide the students with an opportunity
for practical application and further development of knowledge and skills
acquired in the Biomedical Informatics graduate program. The internship
gives students professional work experience and exposure to the challenges
and opportunities faced by IT professionals in the workplace.
Prerequisite(s)/Corequisite(s): Students must have completed a
minimum of 12 credit hours towards the MS in BMI program. Not open to
non-degree graduate students.

BMI 8970 INDEPENDENT STUDY IN BIOINFORMATICS (1-3 credits)
This is a variable-credit course designed for graduate students in
bioinformatics who would benefit from independent reading assignments
and research-type problems. Independent study enables coverage of topics
not taught in scheduled course offerings.
Prerequisite(s)/Corequisite(s): Permission of a supervising faculty
member and approval of the Bioinformatics Program Committee Chair. A
formal description of the problem area to be investigated, the resources to
be used, and the results to be produced must be prepared.

BMI 8990 THESIS IN BIOMEDICAL INFORMATICS (1-6 credits)
A research project, designed and executed under the supervision of the
chair and approval by members of the graduate student’s thesis advisory
committee. In this project the student will develop and perfect a number of
skills including the ability to design, conduct, analyze and report the results
in writing (i.e., thesis) of an original, independent scientific investigation.
Prerequisite(s)/Corequisite(s): Graduate major in BMI and approval of
the Thesis Advisory Committee. Not open to non-degree graduate students.

BMI 9900 ADVANCED RESEARCH IN BIOMEDICAL INFORMATICS
(1-3 credits)
This course provides a format for exploring advanced research areas for
doctoral students in Biomedical Informatics and related fields. Specific
topics will vary in keeping with research interest of faculty and students.
Prerequisite(s)/Corequisite(s): Admission to graduate program in
Biomedical Informatics. Not open to non-degree graduate students.

BMI 9980 INDEPENDENT RESEARCH IN BIOMEDICAL INFORMATICS
(1-3 credits)
This course allows students to research a topic of their interest that is not
available in a formal course. The topic to be studied must be agreed upon
by the student and the instructor.
Prerequisite(s)/Corequisite(s): Admission to Ph.D. program in
Biomedical Informatics and permission of instructor. Not open to non-
degree graduate students.

BMI 9990 DISSERTATION (1-12 credits)
The dissertation is an original research project conducted and written under
the direction of a faculty dissertation committee supervisory committee.
The dissertation provides the student with an opportunity to do original
research that contributes to advancing the body of knowledge in health or
bioinformatics and demonstrate technical mastery of the discipline.
Prerequisite(s)/Corequisite(s): Admission to the Ph.D. program in
Biomedical Informatics and candidacy for the Ph.D. degree. Prior to
enrolling for dissertation hours, the students must have permission of the
supervisory committee. Not open to non-degree graduate students.