EXERCISE SCIENCE, PHD

School of Health and Kinesiology, Department of Biomechanics, College of Education

Vision Statement
The doctoral degree in exercise science at the University of Nebraska at Omaha (UNO) is a joint program between the Department of Biomechanics and the School of Health and Kinesiology. The degree is based on the physiology, biochemistry, biophysics, motor control and development, and psychology of human movement. The program is aimed at developing researchers who are working to improve movement function and physical activity using evidence-based approaches through interdisciplinary clinical and translational research. A problem-solving approach is used across the age and health spectrum for disease prevention, health enhancement, physical rehabilitation, and exercise motivation. The program offers four areas of concentration in biomechanics, physiology of exercise, motor development and control, and physical activity.

Program Contact Information
Danae Dinkel, PhD, Doctoral Program Chair (DPC)
207 School of Health and Kinesiology (H&K)
402.554.2670
dmdinkel@unomaha.edu

Laura Rotert, Administrative Coordinator
100 Biomechanics Research Building (BRB)
402.554.3228
lecampbell@unomaha.edu

Ellen Eitzmann, Graduate Programs Office Assistant
207 School of Health and Kinesiology (H&K)
402.554.2910
eeitzmann@unomaha.edu (eeitzmann@unomaha.edu)

Program Email Address (unohk@unomaha.edu)

Program Website (https://www.unomaha.edu/college-of-education/biomechanics-core-facility/)

Admissions
Application Deadlines (Spring 2021, Summer 2021, and Fall 2021)
Applications for this program are accepted on a rolling basis. All materials must be submitted prior to the beginning of the semester in which the student has elected to begin coursework.

Program-Specific Requirements
• GPA of 3.2 in master’s program or in the last 30 hours of previous graduate work
• Master’s degree, or minimum of 30 graduate hours in a related field, e.g., health, physical therapy
• Applicants are required to have a command of oral and written English. Those who do not hold a baccalaureate or other advanced degree from the United States, OR a baccalaureate or other advanced degree from a predetermined country on the waiver list (https://www.unomaha.edu/graduate-studies/prospective-students/Proof%20of%20English%20Proficiency-%20International.pdf), must meet the minimum language proficiency score requirement in order to be considered for admission. A score of 550 paper-based, 213 computer-based, 80 internet-based, 6.5 IELTS, or a 53 PTE is required, with a score of at least 20 in all categories (listening, reading, writing, and speaking)
• GRE Score:
• Total score (verbal and quantitative) of at least 297. Exam scores must have been taken within the last three (3) years.
• Three (3) Letters of Recommendation
• Statement of Purpose:
 • Needs to state goals and objectives for seeking the degree.
 • Students will identify their intended area of focus and the name of the faculty advisor with whom they wish to work (maximum 500 words).
• Writing Sample:
 • Provide a writing sample which could include: first-author scientific paper, thesis proposal, research paper, or similar example showcasing the student’s aptitude for writing.
• Resume/CV
• Undergraduate Course Deficiencies: these courses are determined by the student’s mentor in collaboration with their supervisory committee. Each student’s individual deficiency courses will be approved in their program of study.
• Identification and confirmation by a faculty member willing to act as advisor and mentor to the student (see program-related information). The applicant is expected to contact a potential advisor to determine if a suitable match in interests exists. This assures that the student will be able to develop a program of study that meets the specific goals intended. Please note that assistantship funding is a separate process and should be discussed with your faculty mentor.

Degree Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINS 9041</td>
<td>ADVANCED STATISTICS</td>
<td>1</td>
</tr>
<tr>
<td>or BMCH 9031</td>
<td>BIOSTATISTICS IN BIOMECHANICS I</td>
<td></td>
</tr>
<tr>
<td>HEKI 9031</td>
<td>RESEARCH IN HEALTH & KINESIOLOGY</td>
<td></td>
</tr>
<tr>
<td>or BMCH 9040</td>
<td>BIOSTATISTICS IN BIOMECHANICS II</td>
<td></td>
</tr>
<tr>
<td>BMCH 9000</td>
<td>GRANT WRITING FOR THE BIOMEDICAL SCIENCES</td>
<td></td>
</tr>
<tr>
<td>BMCH 9010</td>
<td>PRINCIPLES AND PRACTICE OF BIOMEDICAL RESEARCH</td>
<td></td>
</tr>
</tbody>
</table>

Take the following course for a minimum of 9 credit hours:

BMCH/KINS 9910 DOCTORAL SEMINAR 2

Concentrations
See Exercise, PhD Concentrations 24
KINS 9990 DISSERTATION 15

Total Credits 60

1 If HEKI 9031 and KINS 9041 (or equivalent courses) have previously been taken, additional research core courses must be taken in order to meet the 21-hour requirement.
The student and his/her advisor will determine the Program of Study, including the required courses, deficiency courses, and general area of research for the dissertation. The Program of Study must be completed by the end of the first year and approved by the faculty mentor and one additional faculty member from their respective School or Department (considered the Program Committee) as well as the Doctoral Program Committee Chair. After this approval, the student will submit the Program of Study form with course information to the Graduate Studies Office. Please note, no more than six independent study/research credit hours are recommended; however, the Program of Study is determined by the student, faculty mentor, and an additional faculty member in the School or Department.

Comprehensive Exam
• The required comprehensive exam will be taken towards the end of the student's coursework. The supervisory committee, in conjunction with the student will determine the nature of the exam; the exam could include a take-home exam followed by an oral defense, or writing an NIH-type grant followed by an oral exam. The supervisory committee will evaluate the exam. Once a student passes their comprehensive exam they are considered a doctoral candidate.

Dissertation Committee
• In the first semester of a students' third year, the student must form a Dissertation Committee. It should consist of at least four Exercise Science-affiliated faculty members, three of whom must be graduate faculty within the NU system and one of whom must be from a department different than that of the dissertation advisor. The Dean of Graduate Studies at UNO will appoint the committee upon recommendation of the advisor. The committee will be responsible for approving the comprehensive exam, dissertation proposal, dissertation and its oral defense. Please note that if the potential objectives of a dissertation topic changes, the dissertation committee can be altered at any time.

Dissertation Proposal Form
• Within one year of successfully completing the comprehensive exam and being admitted to candidacy, a formal research proposal for the dissertation topic should be presented to the supervisory committee. The format of the proposal is subject to approval by the advisor and the supervisory committee. The proposal could include a formal written proposal with an oral defense or oral presentation of the proposed research project.

Dissertation
• After successfully completing the comprehensive exam and being admitted to degree candidacy, the student must register for at least one credit hour of dissertation for each semester until completion of the degree. A minimum of 15 hours of dissertation credit must be completed within the course of the degree.
• It is expected that the dissertation will result in manuscript submissions in referred journals in the discipline.
• Upon completion of the dissertation, an updated CV must be submitted to the Doctoral Program Committee chair.

Residency
• The residency will be reasonably compact, continuous, and coherent, and a substantial portion done at and under close supervision of the university. Most of the students in the program will be full-time and continuously enrolled.

Concentrations

Physiology of Exercise Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINS 9951/8950</td>
<td>ADVANCED EXERCISE PHYSIOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>KINS 9960</td>
<td>ADVANCED EXERCISE PHYSIOLOGY II</td>
<td>3</td>
</tr>
<tr>
<td>HEKI 9851/8850</td>
<td>EXERCISE FOR SPECIAL POPULATIONS</td>
<td>3</td>
</tr>
<tr>
<td>KINS 8076</td>
<td>OPTIMIZING SPORTS PERFORMANCE</td>
<td>3</td>
</tr>
<tr>
<td>KINS 8086</td>
<td>CLINICAL EXERCISE PHYSIOLOGY</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives
Select 9 hours from the following:

- BMCH 9451/8450 ADVANCED BIOMECHANICS
- BMCH 9460 ADVANCED BIOMECHANICS II
- KINS 9810 HIGHER EDUCATION TEACHING SEMINAR
- BMCH 9411/8410 MOTOR CONTROL I
- BMCH 9510 MOTOR CONTROL II
- BIOL 8146 CELLULAR BIOLOGY
- BIOL/CHM 8654 BIOCHEMISTRY I LABORATORY
- BIOL/CHM 8664 BIOCHEMISTRY II LABORATORY
- KINS 8120 CURRENT TOPICS IN WEIGHT MANAGEMENT
- KINS 9131/8130 IMPLEMENTING PHYSICAL ACTIVITY IN DIVERSE POPULATIONS
- KINS 9141/8140 PHYSICAL ACTIVITY ASSESSMENT AND HEALTH RELATED RESEARCH
- KINS 8206 PLANNING WORKSITE WELLNESS PROGRAMS
- KINS 8240 SPORT IN AMERICAN CULTURE
- KINS 8280 CURRICULUM IN PHYSICAL EDUCATION
- KINS 8460 OCCUPATIONAL BIOMECHANICS
- KINS 8506 BEHAVIORAL ASPECTS OF COACHING
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINS 8800</td>
<td>RISK MANAGEMENT FOR HEALTH FITNESS PROFESSIONALS</td>
<td></td>
</tr>
<tr>
<td>KINS 8856</td>
<td>CARDIOVASCULAR DISEASE PREVENTION AND REHABILITATION</td>
<td></td>
</tr>
<tr>
<td>KINS 8700</td>
<td>PSYCHOLOGY OF PHYSICAL ACTIVITY</td>
<td></td>
</tr>
<tr>
<td>KINS 8910</td>
<td>INTERNSHIP IN EXERCISE SCIENCE</td>
<td></td>
</tr>
<tr>
<td>KINS 8966</td>
<td>TOPICS IN SPORTS MEDICINE</td>
<td></td>
</tr>
<tr>
<td>KINS 9820</td>
<td>SERVICE EXPERIENCE IN HIGHER EDUCATION</td>
<td></td>
</tr>
<tr>
<td>BMCH 9401/8400</td>
<td>MOTOR LEARNING I</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9421/8420</td>
<td>MOTOR DEVELOPMENT</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9500</td>
<td>MOTOR LEARNING II</td>
<td>3</td>
</tr>
<tr>
<td>Heki 8000</td>
<td>SPECIAL STUDIES</td>
<td></td>
</tr>
<tr>
<td>Heki 8220</td>
<td>PROBLEMS & ISSUES IN HPER</td>
<td></td>
</tr>
<tr>
<td>Heki 8100</td>
<td>RESEARCH PROJECT</td>
<td></td>
</tr>
<tr>
<td>Heki 8300</td>
<td>ANALYSIS OF RESEARCH AND LITERATURE IN HUMAN MOVEMENT</td>
<td></td>
</tr>
<tr>
<td>Heki 8500</td>
<td>QUALITATIVE RESEARCH METHODS</td>
<td></td>
</tr>
<tr>
<td>BIOC 827</td>
<td>Metabolic Regulatory Mechanisms</td>
<td></td>
</tr>
<tr>
<td>BMCH 9451</td>
<td>ADVANCED BIOMECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9460</td>
<td>ADVANCED BIOMECHANICS II</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 8400</td>
<td>MOTOR LEARNING I</td>
<td></td>
</tr>
<tr>
<td>or BMCH 8410</td>
<td>MOTOR CONTROL I</td>
<td>3</td>
</tr>
<tr>
<td>or BMCH 8420</td>
<td>MOTOR DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>BMCH 9500</td>
<td>MOTOR LEARNING II</td>
<td></td>
</tr>
<tr>
<td>or BMCH 9510</td>
<td>MOTOR CONTROL II</td>
<td>3</td>
</tr>
<tr>
<td>or BMCH 9520</td>
<td>MOTOR DEVELOPMENT II</td>
<td></td>
</tr>
<tr>
<td>PHYS 8455</td>
<td>CLASSICAL MECHANICS</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 9 hours from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCH 8106</td>
<td>BIOINSPIRED ROBOTICS</td>
<td></td>
</tr>
<tr>
<td>BMCH 8206</td>
<td>METHODS IN BIOMECHANICS I</td>
<td></td>
</tr>
<tr>
<td>BMCH 8216</td>
<td>METHODS IN BIOMECHANICS II</td>
<td></td>
</tr>
<tr>
<td>BMCH 8646</td>
<td>ORTHOPEDIC BIOMECHANICS</td>
<td></td>
</tr>
<tr>
<td>BMCH 9421</td>
<td>MOTOR DEVELOPMENT</td>
<td></td>
</tr>
<tr>
<td>BMCH 9520</td>
<td>MOTOR DEVELOPMENT II</td>
<td></td>
</tr>
<tr>
<td>BMCH 9401</td>
<td>MOTOR LEARNING I</td>
<td></td>
</tr>
<tr>
<td>BMCH 9500</td>
<td>MOTOR LEARNING II</td>
<td></td>
</tr>
<tr>
<td>BMCH 9411</td>
<td>MOTOR CONTROL I</td>
<td></td>
</tr>
<tr>
<td>BMCH 9510</td>
<td>MOTOR CONTROL I</td>
<td></td>
</tr>
<tr>
<td>BMCH 9101</td>
<td>NONLINEAR ANALYSIS FOR MOVEMENT STUDIES</td>
<td></td>
</tr>
<tr>
<td>BMCH 9911</td>
<td>INDEPENDENT STUDY IN BIOMECHANICS</td>
<td></td>
</tr>
<tr>
<td>BMCH 9201</td>
<td>MATLAB FOR MOVEMENT SCIENCES</td>
<td></td>
</tr>
<tr>
<td>BMCH 9870</td>
<td>MUSCULOSKELETAL SIMULATION</td>
<td></td>
</tr>
<tr>
<td>BSEN 814</td>
<td>Medical Imaging Systems</td>
<td></td>
</tr>
<tr>
<td>BSEN 912</td>
<td>Advanced Diagnostic Ultrasound Imaging</td>
<td></td>
</tr>
<tr>
<td>CEEN 8336</td>
<td>Microprocessor System Design</td>
<td></td>
</tr>
<tr>
<td>CEEN 8366</td>
<td>Embedded Microcontroller Design</td>
<td></td>
</tr>
<tr>
<td>CIP 814</td>
<td>Scientific Writing</td>
<td></td>
</tr>
<tr>
<td>CIP 817</td>
<td>Applied Scientific Writing</td>
<td></td>
</tr>
<tr>
<td>CSCI 8325</td>
<td>DATA STRUCTURES</td>
<td></td>
</tr>
<tr>
<td>CSCI 8400</td>
<td>ADVANCED COMPUTER GRAPHICS</td>
<td></td>
</tr>
<tr>
<td>CSCI 8456</td>
<td>INTRODUCTION TO ARTIFICIAL INTELLIGENCE</td>
<td></td>
</tr>
<tr>
<td>CSCI 8476</td>
<td>PATTERN RECOGNITION</td>
<td></td>
</tr>
<tr>
<td>CSCI/MATH 8500</td>
<td>NUMERICAL LINEAR ALGEBRA</td>
<td></td>
</tr>
<tr>
<td>CSCI/MATH 8510</td>
<td>NUMERICAL DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>CSCI 8626</td>
<td>COMPUTER GRAPHICS</td>
<td></td>
</tr>
<tr>
<td>CSCI 8856</td>
<td>CARDIOVASCULAR DISEASE PREVENTION AND REHABILITATION</td>
<td></td>
</tr>
<tr>
<td>ELE 8606</td>
<td>Labview Programming</td>
<td></td>
</tr>
<tr>
<td>ELE 8636</td>
<td>Digital Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ELE 9150</td>
<td>Adaptive Signal Processing</td>
<td></td>
</tr>
<tr>
<td>ENGL 8610</td>
<td>PROFESSIONAL AND TECHNICAL WRITING</td>
<td></td>
</tr>
<tr>
<td>GCA 812</td>
<td>Human Neuranoatomy</td>
<td></td>
</tr>
<tr>
<td>GER/DHBB 8556</td>
<td>HEALTH ASPECTS OF AGING</td>
<td></td>
</tr>
<tr>
<td>GER 9460</td>
<td>SEMINAR IN AGING AND HUMAN BEHAVIOR</td>
<td></td>
</tr>
<tr>
<td>Heki 8300</td>
<td>ANALYSIS OF RESEARCH AND LITERATURE IN HUMAN MOVEMENT</td>
<td></td>
</tr>
<tr>
<td>Heki 8500</td>
<td>QUALITATIVE RESEARCH METHODS</td>
<td></td>
</tr>
<tr>
<td>ITIN 8006</td>
<td>SPECIAL TOPICS IN IT INNOVATION</td>
<td></td>
</tr>
<tr>
<td>Heki 9851/8850</td>
<td>EXERCISE FOR SPECIAL POPULATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 8250</td>
<td>PARTIAL DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 8336</td>
<td>INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 8356</td>
<td>ORDINARY DIFFERENTIAL EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>MATH 8080</td>
<td>DESIGN AND ANALYSIS OF ALGORITHMS</td>
<td></td>
</tr>
<tr>
<td>MATH/CSCI 8306</td>
<td>DETERMINISTIC OPERATIONS RESEARCH MODELS</td>
<td></td>
</tr>
<tr>
<td>MATH/CSCI 8316</td>
<td>PROBABILISTIC OPERATIONS RESEARCH MODELS</td>
<td></td>
</tr>
<tr>
<td>MATH 8400</td>
<td>DYNAMICAL SYSTEMS AND CHAOS</td>
<td></td>
</tr>
<tr>
<td>MATH/CSCI 8766</td>
<td>TOPICS IN APPLIED MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>MATH 9110</td>
<td>ADVANCED TOPICS IN APPLIED MATHEMATICS</td>
<td></td>
</tr>
<tr>
<td>MENG 8386</td>
<td>MECHANICS OF BIOMATERIALS</td>
<td></td>
</tr>
<tr>
<td>NEUR 8006</td>
<td>SYSTEMS NEUROSCIENCE</td>
<td></td>
</tr>
<tr>
<td>KINS 8086</td>
<td>CLINICAL EXERCISE PHYSIOLOGY</td>
<td></td>
</tr>
<tr>
<td>KINS 9131</td>
<td>IMPLEMENTING PHYSICAL ACTIVITY IN DIVERSE POPULATIONS</td>
<td></td>
</tr>
<tr>
<td>KINS 9141/8140</td>
<td>PHYSICAL ACTIVITY ASSESSMENT AND HEALTH RELATED RESEARCH</td>
<td></td>
</tr>
<tr>
<td>KINS 8460</td>
<td>OCCUPATIONAL BIOMECHANICS</td>
<td></td>
</tr>
<tr>
<td>KINS 8856</td>
<td>CARDIOVASCULAR DISEASE PREVENTION AND REHABILITATION</td>
<td></td>
</tr>
<tr>
<td>KINS 9951/8950</td>
<td>ADVANCED EXERCISE PHYSIOLOGY</td>
<td></td>
</tr>
<tr>
<td>KINS 9960</td>
<td>ADVANCED EXERCISE PHYSIOLOGY II</td>
<td></td>
</tr>
<tr>
<td>PHYS 8505</td>
<td>ELEMENTS OF ELECTRONICS</td>
<td></td>
</tr>
<tr>
<td>PSYC 9010</td>
<td>PROSEMINAR: STATISTICAL METHODS I</td>
<td></td>
</tr>
<tr>
<td>PSYC 9020</td>
<td>PROSEMINAR: STATISTICAL METHODS II</td>
<td></td>
</tr>
<tr>
<td>PSYC 9070</td>
<td>PROSEMINAR: COGNITIVE PSYCHOLOGY</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 24
Motor Development and Control Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMCH 9421/8420</td>
<td>MOTOR DEVELOPMENT</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9460</td>
<td>ADVANCED BIOMECHANICS II</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9500</td>
<td>MOTOR LEARNING II</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9510</td>
<td>MOTOR CONTROL II</td>
<td>3</td>
</tr>
<tr>
<td>BMCH 9101</td>
<td>NONLINEAR ANALYSIS FOR MOVEMENT STUDIES</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 9 hours from the following:

- BMCH 8206 METHODS IN BIOMECHANICS I
- BMCH 8216 METHODS IN BIOMECHANICS II
- BMCH 9401 MOTOR LEARNING I
- BMCH 9411 MOTOR CONTROL I
- BMCH 9421 MOTOR DEVELOPMENT
- BMCH 9101 NONLINEAR ANALYSIS FOR MOVEMENT STUDIES
- BMCH 9201 MATLAB FOR MOVEMENT SCIENCES
- BMCH 9451 ADVANCED BIOMECHANICS
- BMCH 9911 INDEPENDENT STUDY IN BIOMECHANICS
- BMCH 9460 ADVANCED BIOMECHANICS II
- BMCH 9870 MUSCULOSKELETAL SIMULATION
- CSCI 8626 COMPUTER GRAPHICS
- CSCI 8256 HUMAN COMPUTER INTERACTION
- ELEC 8606 Labview Programming
- ELEC 8636 Digital Signal Processing
- ELEC 9150 Adaptive Signal Processing
- ENGL 8610 PROFESSIONAL AND TECHNICAL WRITING
- GERO/PHHB 8556 HEALTH ASPECTS OF AGING
- GERO 9460 SEMINAR IN AGING AND HUMAN BEHAVIOR
- NEUR 8006 SYSTEMS NEUROSCIENCE
- KINS 8086 CLINICAL EXERCISE PHYSIOLOGY
- KINS 8130/9131 IMPLEMENTING PHYSICAL ACTIVITY IN DIVERSE POPULATIONS
- KINS 9141/8140 PHYSICAL ACTIVITY ASSESSMENT AND HEALTH RELATED RESEARCH
- KINS 8460 OCCUPATIONAL BIOMECHANICS
- KINS 8856 CARDIOVASCULAR DISEASE PREVENTION AND REHABILITATION
- KINS 9951/8950 ADVANCED EXERCISE PHYSIOLOGY
- KINS 9810 HIGHER EDUCATION TEACHING SEMINAR
- BMCH 9451/8450 ADVANCED BIOMECHANICS
- BMCH 9460 ADVANCED BIOMECHANICS II
- BMCH 9411/8410 MOTOR CONTROL I
- BMCH 9510 MOTOR CONTROL II
- KINS 8206 PLANNING WORKSITE WELLNESS PROGRAMS
- KINS 8460 OCCUPATIONAL BIOMECHANICS
- KINS 8800 RISK MANAGEMENT FOR HEALTH FITNESS PROFESSIONALS
- KINS 8910 INTERNSHIP IN EXERCISE SCIENCE
- KINS 8966 TOPICS IN SPORTS MEDICINE
- BMCH 9401/8400 MOTOR LEARNING I
- BMCH 9421/8420 MOTOR DEVELOPMENT
- BMCH 9500 MOTOR LEARNING II
- HEKI 8000 SPECIAL STUDIES
- HEKI 8100 RESEARCH PROJECT
- HEKI 8220 PROBLEMS & ISSUES IN HPER
- HEKI 8300 ANALYSIS OF RESEARCH AND LITERATURE IN HUMAN MOVEMENT
- HEKI 8500 QUALITATIVE RESEARCH METHODS
- PHHB 8450 EPIDEMIOLOGY & PREVENTION OF DISEASE
- PHHB/SOC 8706 WOMEN'S HEALTH AND ISSUES OF DIVERSITY
- PHHB 8750 PROGRAM EVALUATION AND INSTRUMENTATION
- PHHB 8850 HEALTH ASPECTS OF STRESS MANAGEMENT
- GEOG 8056 GEOGRAPHIC INFORMATION SYSTEMS I
- GEOG 8666 GEOGRAPHIC INFORMATION SYSTEMS II

Physical Activity Concentration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINS 9131/8130</td>
<td>IMPLEMENTING PHYSICAL ACTIVITY IN DIVERSE POPULATIONS</td>
<td>3</td>
</tr>
<tr>
<td>KINS 9141/8140</td>
<td>PHYSICAL ACTIVITY ASSESSMENT AND HEALTH RELATED RESEARCH</td>
<td>3</td>
</tr>
<tr>
<td>KINS 9701/8700</td>
<td>PSYCHOLOGY OF PHYSICAL ACTIVITY</td>
<td>3</td>
</tr>
<tr>
<td>HEKI 9851/8850</td>
<td>EXERCISE FOR SPECIAL POPULATIONS</td>
<td>3</td>
</tr>
<tr>
<td>KINS 9040</td>
<td>PHYSICAL ACTIVITY EPIDEMIOLOGY</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives

Select 9 hours from the following:

- KINS 8120 CURRENT TOPICS IN WEIGHT MANAGEMENT
- KINS 8856 CARDIOVASCULAR DISEASE PREVENTION AND REHABILITATION
- KINS 9951/8950 ADVANCED EXERCISE PHYSIOLOGY
- KINS 9810 HIGHER EDUCATION TEACHING SEMINAR
- BMCH 9451/8450 ADVANCED BIOMECHANICS
- BMCH 9460 ADVANCED BIOMECHANICS II
- BMCH 9411/8410 MOTOR CONTROL I
- BMCH 9510 MOTOR CONTROL II
- KINS 8206 PLANNING WORKSITE WELLNESS PROGRAMS
- KINS 8460 OCCUPATIONAL BIOMECHANICS
- KINS 8800 RISK MANAGEMENT FOR HEALTH FITNESS PROFESSIONALS
- KINS 8910 INTERNSHIP IN EXERCISE SCIENCE
- KINS 8966 TOPICS IN SPORTS MEDICINE
- BMCH 9401/8400 MOTOR LEARNING I
- BMCH 9421/8420 MOTOR DEVELOPMENT
- BMCH 9500 MOTOR LEARNING II
- HEKI 8000 SPECIAL STUDIES
- HEKI 8100 RESEARCH PROJECT
- HEKI 8220 PROBLEMS & ISSUES IN HPER
- HEKI 8300 ANALYSIS OF RESEARCH AND LITERATURE IN HUMAN MOVEMENT
- HEKI 8500 QUALITATIVE RESEARCH METHODS
- PHHB 8450 EPIDEMIOLOGY & PREVENTION OF DISEASE
- PHHB/SOC 8706 WOMEN'S HEALTH AND ISSUES OF DIVERSITY
- PHHB 8750 PROGRAM EVALUATION AND INSTRUMENTATION
- PHHB 8850 HEALTH ASPECTS OF STRESS MANAGEMENT
- GEOG 8056 GEOGRAPHIC INFORMATION SYSTEMS I
- GEOG 8666 GEOGRAPHIC INFORMATION SYSTEMS II

Total Credits: 24
MATH/CSCI 8316 PROBABILISTIC OPERATIONS RESEARCH MODELS
MATH/CSCI 8766 TOPICS IN APPLIED MATHEMATICS
PA 8740 HEALTH CARE POLICY
PA 8760 THE U.S. HEALTH CARE SYSTEM
PSYC 8646 PERSONNEL PSYCHOLOGY
PSYC 9430 PROSEMINAR: PERSONALITY
PSYC 9440 PROSEMINAR: SOCIAL PSYCHOLOGY
PSYC 9500 SOCIOEMOTIONAL DEVELOPMENT
PSYC 9550 PSYCHOSOCIAL DEVELOPMENT
SOC 8200 SOCIETY & HEALTH
UNMC: BIOS 823, BIOS 825, BIOS 810, EPI 821, EPI 835, EPI 845, HPRO 902, HPRO 910, HPRO 998.

BMCH 8000 SEMINAR IN BIOMECHANICS (0 credits)
Required non-credit course for graduate students in biomechanics. Intended to familiarize the graduate student with current ongoing biomechanical research at UNO and other institutions. The seminar will additionally include topics focusing on professional development, job and educational opportunities, and biomechanical methodologies.
Prerequisite(s)/Corequisite(s): Must be a student in BMCH graduate program. Not open to non-degree graduate students.

BMCH 8030 BIOSTATISTICS IN BIOMECHANICS I (3 credits)
The focus of the course is to introduce students to the process of statistical reasoning and data analysis in biomechanics. Major topics covered include descriptive statistics, probability, and inferential statistics.
Prerequisite(s)/Corequisite(s): Graduate Standing in Biomechanics program or Department Permission.

BMCH 8100 NONLINEAR ANALYSIS FOR MOVEMENT STUDIES (3 credits)
This course is to introduce different nonlinear methods for the analysis of biological and movement time series. Emphasis will be given on understanding the algorithms behind each nonlinear method.
Prerequisite(s)/Corequisite(s): Instructor Permission.

BMCH 8106 BIOINSPIRED ROBOTICS (3 credits)
The goal of the course is to involve students in an interdisciplinary vision of biomechanics, biology, engineering and architecture by learning how humans and other animals function in their environment. These design principles from nature can be translated into novel devices, structures, and robots.
Prerequisite(s)/Corequisite(s): Instructor permission.

BMCH 8200 MATLAB FOR MOVEMENT SCIENCES (3 credits)
Introduction to Matlab software, plotting data, spectral analysis and the Fourier transform, data smoothing, and image analysis of movement related data. All topics will be implemented using Matlab.
Prerequisite(s)/Corequisite(s): Instructor permission.

BMCH 8206 METHODS IN BIOMECHANICS I (3 credits)
In this course students learn about the methods and equipment used in biomechanics as well as the analysis of data collected from those methods. Course experiences include both lecture and lab based learning.
Prerequisite(s)/Corequisite(s): Department Permission

BMCH 8216 METHODS IN BIOMECHANICS II (3 credits)
In this course students learn about advanced methods and equipment used in biomechanics, as well as the analysis of data collected from those methods. Course experiences include both lecture and lab based learning.
Prerequisite(s)/Corequisite(s): BMCH 8206 or Department Permission

BMCH 8400 MOTOR LEARNING I (3 credits)
Discussion and analysis of scientific principles related to the learning of motor skills; review related literature and research in motor learning. The focus of the course is on current theories of how movements are acquired and performed, and on factors that influence motor learning throughout the life span. (Cross-listed with BMCH 9401)
Prerequisite(s)/Corequisite(s): Department Permission.

BMCH 8410 MOTOR CONTROL I (3 credits)
The focus of the course is to explore the study of the conditions and factors that influence the control and performance of motor skills from both neurophysiological and psychobiological perspectives. (Cross-listed with BMCH 9411)
Prerequisite(s)/Corequisite(s): Department Permission. Not open to non-degree graduate students.

BMCH 8420 MOTOR DEVELOPMENT (3 credits)
This course focuses on the study of motor development, the processes that underlie this development and the factors that influence it. Students will gain an understanding of the major theoretical perspectives of motor development across the life span with special emphasis given in child development. (Cross-listed with BMCH 9421)
Prerequisite(s)/Corequisite(s): Department Permission.

BMCH 8450 ADVANCED BIOMECHANICS (3 credits)
The course will address the biomechanical basis of human performance including mechanical analysis of human gait, fundamental movement patterns and techniques used for collecting biomechanical data. (Cross-listed with BMCH 9451)
Prerequisite(s)/Corequisite(s): BMCH 4630 (Biomechanics) [previously PE 4630] or Instructor Permission.

BMCH 8466 ORTHOPEDIC BIOMECHANICS (3 credits)
Orthopedic Biomechanics focuses on the use of biomechanical principles and scientific methods to address clinical questions that are of particular interest to professionals such as orthopedic surgeons, physical therapists, rehabilitation specialists, and others. (Cross-listed with BMCH 4640)
Prerequisite(s)/Corequisite(s): Department Permission

BMCH 8666 CLINICAL IMMERSION FOR RESEARCH AND DESIGN (3 credits)
This course will involve exposure to current clinical practices, identification of unmet clinical needs, and information regarding future career options. In this course, students will be matched with local clinical sites to provide a unique opportunity for innovative and interdisciplinary approaches to problem solving subject to practical constraints. Concepts in clinical rehabilitation, integrated assessments, regulation of medical devices in health care will be covered. This course will review the latest research efforts for rehabilitation in the context of device design and implementation. (Cross-listed with BMCH 4660)
Prerequisite(s)/Corequisite(s): Instructor Permission. Not open to non-degree graduate students.

BMCH 8900 INDEPENDENT RESEARCH IN BIOMECHANICS (1-6 credits)
In this course individuals or groups will conduct research projects for the study and analysis of biomechanical topics.
Prerequisite(s)/Corequisite(s): Permission of the Department and approval by Faculty Advisor. Not open to non-degree graduate students.

BMCH 8910 INDEPENDENT STUDY IN BIOMECHANICS (1-6 credits)
This is a variable credit course designed for graduate students in Biomechanics who would benefit from independent reading assignments and problems. Independent study enables individual students or a small group of students to focus on topics typically not explored in other offerings or to explore topics currently offered in further depth. (Cross-listed with BMCH 9911)
Prerequisite(s)/Corequisite(s): Graduate student in BMCH and approval by Faculty Advisor. Not open to non-degree graduate students.
BMCH 8990 THESIS IN BIOMECHANICS (1-6 credits)
A research project, designed and executed under the supervision of the chair and approval by members of the graduate student's advisory committee. In this project the student will develop skills in research design, research conduct, data analysis, and reporting. The final product of this course will be an original thesis of independent scientific investigation.
Prerequisite(s)/Corequisite(s): Department Permission. Not open to non-degree graduate students.

BMCH 9000 GRANT WRITING FOR THE BIOMEDICAL SCIENCES (3 credits)
The purpose of this course is to introduce students to the scientific process and translate it to effective grant writing for biomedical sciences. Topics covered include hypotheses development, strong inference, how to write specific aims, how to generate ideas, federal grant processes with emphasis on National Institutes of Health, National Science Foundation and Veterans' Affairs, how to evaluate calls for grant applications, grant construction, and stylistic writing approaches. Students will compare and contrast successful and unsuccessful grant submissions.

BMCH 9010 PRINCIPLES AND PRACTICE OF BIOMEDICAL RESEARCH (3 credits)
The purpose of this course is to introduce students to a variety of topics related to research practice that will allow them to be successful, independent scientists. Topics covered include manuscript writing and plagiarism, authorship, mentoring, research ethics, responsible conduct of research, presentation skills, research notebook keeping, scientific etiquette, and time and laboratory management.

BMCH 9031 BIOSTATISTICS IN BIOMECHANICS I (3 credits)
The focus of the course is to prepare students to understand and apply research and biostatistical methods needed in the design and analysis of biomechanical investigations. The major topics to be covered include research design and multiple linear regression. (Cross-listed with BMCH 8030)
Prerequisite(s)/Corequisite(s): Graduate Standing in Biomechanics program or Department Permission.

BMCH 9040 BIOSTATISTICS IN BIOMECHANICS II (3 credits)
The focus of the course is to prepare graduate students to understand and apply advanced research and biostatistical methods needed in the design and analysis of biomechanical investigations. The major topics to be covered include advanced research design and the general linear model. This course builds upon basic research design and linear regression learned in Biostatistics in Biomechanics I for the application in single factor and multi-factor experimental analyses.
Prerequisite(s)/Corequisite(s): Graduate Standing, BMCH 8030/9031 or equivalent

BMCH 9101 NONLINEAR ANALYSIS FOR MOVEMENT STUDIES (3 credits)
This course is to introduce different nonlinear methods for the analysis of biological and movement time series. Emphasis will be given on understanding the algorithms behind each nonlinear method. (Cross-listed with BMCH 8100)
Prerequisite(s)/Corequisite(s): Instructor Permission

BMCH 9201 MATLAB FOR MOVEMENT SCIENCES (3 credits)
Introduction to Matlab software, plotting data, spectral analysis and the Fourier transform, data smoothing, and image analysis of movement related data. All topics will be implemented using Matlab. (Cross-listed with BMCH 8200)
Prerequisite(s)/Corequisite(s): Instructor permission.

BMCH 9401 MOTOR LEARNING I (3 credits)
Discussion and analysis of scientific principles related to the learning of motor skills; review related literature and research in motor learning. The focus of the course is on recent theories of how movements are acquired and performed, and on factors that have implications for motor learning throughout the life span. (Cross-listed with BMCH 8400)
Prerequisite(s)/Corequisite(s): Department Permission.

BMCH 9411 MOTOR CONTROL I (3 credits)
The focus of the course is to explore the study of the conditions and factors that influence the control and performance of motor skills from both neurophysiological and psychobiological perspectives. (Cross-listed with BMCH 8410)
Prerequisite(s)/Corequisite(s): Department Permission. Not open to non-degree graduate students.

BMCH 9421 MOTOR DEVELOPMENT (3 credits)
This course focuses on the study of motor development, the processes that underlie this development and the factors that influence it. Students will gain an understanding of the major theoretical perspectives of motor development across the life span with special emphasis given in child development. (Cross-listed with BMCH 8420)
Prerequisite(s)/Corequisite(s): PE 2800 (Motor Behavior) or permission of instructor.

BMCH 9451 ADVANCED BIOMECHANICS I (3 credits)
The course will address the biomechanical basis of human performance including mechanical analysis of human gait, fundamental movement patterns and techniques used for collecting biomechanical data. (Cross-listed with BMCH 8450)
Prerequisite(s)/Corequisite(s): BMCH 4630 (Biomechanics) [previously PE 4630] or Instructor Permission.

BMCH 9460 ADVANCED BIOMECHANICS II (3 credits)
A comprehensive and advanced detailed investigation of the biomechanics of motor performance in special populations such as stroke, Parkinson's disease, and amputees. Includes advanced study of the mechanical analysis of motor skills and movement patterns and the research techniques for collecting and interpreting biomechanical data. Detailed lectures will cover etiology of such special populations with a focus on the endpoint movement disorders.
Prerequisite(s)/Corequisite(s): BMCH 8450 or BMCH 9451 or Instructor Permission. Not open to non-degree graduate students.

BMCH 9500 MOTOR LEARNING II (3 credits)
The focus of the course is to further explore the study of the conditions and factors that influence the learning and performance of motor skills.
Prerequisite(s)/Corequisite(s): BMCH 8400, BMCH 9401 or Instructor Permission. Not open to non-degree graduate students.

BMCH 9510 MOTOR CONTROL II (3 credits)
The focus of the course is to further explore the study of the conditions and factors that influence the control and performance of motor skills.
Prerequisite(s)/Corequisite(s): BMCH 8410, BMCH 9411 or Department Permission. Not open to non-degree graduate students.

BMCH 9520 MOTOR DEVELOPMENT II (3 credits)
This course focuses on the study of motor development, the processes that underlie this development and the factors that influence it. This course will focus on exploring motor development in clinical populations of people with autism, down syndrome, cerebral palsy, etc. and the factors that influence the progression of motor skills.
Prerequisite(s)/Corequisite(s): BMCH 8420 or permission from instructor.

BMCH 9870 MUSCULOSKELETAL SIMULATION (3 credits)
This course covers knowledge and skills needed to generate dynamic models, analyses, and simulations of the human musculoskeletal system for different types of movement. In this course, students build and analyze computer simulations implemented on common software platforms to gain insight into movement biomechanics and control. The materials covered in this course may be of interest to engineers, physical therapists, and biomedical researchers looking to apply their technical skills to solving clinical problems. This course emphasizes the technical skills necessary to conduct and analyze musculoskeletal simulations of movement.
Prerequisite(s)/Corequisite(s): Department Permission.
BMCH 9910 DOCTORAL SEMINAR (3 credits)
The major goal of this course is to teach the graduate student how to write manuscripts/grants and be an effective academician with strong ethics. The outcome of this course is for the student to produce a manuscript based on data acquired in the laboratory from the ideas developed in the seminar or submit a grant that will support the research ideas developed in at least one semester. The material covered is intended to equip students with the skills necessary to be successful in their academic careers with emphasis given on writing scientific papers. (Cross-listed with KINS 9910).
Prerequisite(s)/Corequisite(s): Admission into the PhD program. Not open to non-degree graduate students.

BMCH 9911 INDEPENDENT STUDY IN BIOMECHANICS (1-6 credits)
This is a variable credit course designed for graduate students in Biomechanics who would benefit from independent reading assignments and problems. Independent study enables individual students or a small group of students to focus on topics typically not explored in other offerings or to explore topics currently offered in further depth. (Cross-listed with BMCH 8910)
Prerequisite(s)/Corequisite(s): Graduate student in BMCH and approval by Faculty Advisor. Not open to non-degree graduate students.

BMCH 9990 DISSERTATION (1-15 credits)
The course provides doctoral candidates in Exercise Science with a process to complete a dissertation research plan. The course learning activities will focus on the completion of a candidate’s dissertation. The course is designed to allow advanced doctoral candidates to demonstrate technical mastery of the discipline and to advance knowledge by completing an investigation. (Cross-listed with KINS 9990).
Prerequisite(s)/Corequisite(s): Admission to the UNO Doctoral Program in Exercise Science, successful completion of doctoral coursework & comprehensive exams, approval of the dissertation supervisory committee chair & advancement to candidacy. Not open to non-degree graduate students.