ENVIROMENTAL STUDIES

The field of Environmental Studies recognizes that finding solutions to the environmental challenges facing our society requires individuals with experience and training in a broad array of disciplines. Success in the field requires not only a scientific background to develop technical solutions but also an understanding of the social and economic implications of solutions and decisions. The Environmental Studies Program at UNO offers interdisciplinary undergraduate degrees that provide students with training in the breadth of disciplines required to understand the complex nature of solving environmental challenges, as well as the scientific expertise needed to successfully pursue a career relating to the environment.

Other Information
All coursework taken for the Environmental Science major or minor must be completed with a grade of "C-" or better.

Double Majors
ENVN–Geography & Planning and Geography double majors: Students completing both of these majors may count all geography courses toward both majors.

ENVN–Life Sciences and Biology double majors: Students may not count the same 3000-4000 level Biology courses towards both majors. Double majors are required to take a minimum of 5 additional upper division BIOL courses that are not part of the other major. These courses must be approved by the advisor and at least three of these must be lab courses. BIOL 3150 may not count as part of these upper division courses.

Fast Track Program (for students seeking the BS in Environmental Science with a concentration in Geography and Planning)
The Department of Geography/Geology has developed a Fast Track program for highly qualified and motivated students providing the opportunity to complete a bachelor’s degree and a master’s degree in an accelerated time frame. With Fast Track, students may count up to 9 graduate hours toward the completion of their undergraduate program as well as the graduate degree program.

Program Specifics:
• This program is available for undergraduate students pursuing a BS in Environmental Science (Geography & Planning Option) desiring to pursue an MS in Geography.
• Students must have completed no less than 60 undergraduate hours.
• Students must have a minimum undergraduate GPA of 3.0.
• Students must have a graduate faculty member in the department of Geography/Geology provide a short letter of support for their application to Fast Track as a faculty sponsor/mentor.
• Students must complete the Fast Track Approval form and obtain all signatures and submit to the Office of Graduate Studies prior to first enrollment in a graduate course.
• Students will work with their undergraduate advisor to register for the graduate courses.
• A minimum cumulative GPA of 3.0 for graduate coursework is required to remain in good standing.
• Students remain undergraduates until they meet all the requirements for the undergraduate degree and are eligible for all rights and privileges granted undergraduate status including financial aid.
• Near the end of the undergraduate program, formal application to the graduate program is required. The application fee will be waived; the applicant will need to contact the Office of Graduate Studies for a fee waiver code.
• Admission to Fast Track does NOT guarantee admission to the graduate program.
• The admit term must be after the completion term of the undergraduate degree.

Contact
Dr. John McCarty, Director
114 Allwine Hall
402.554.2849
jmccarty@unomaha.edu

Website (http://www.unomaha.edu/college-of-arts-and-sciences/environmental-studies/)

Degrees Offered
• Environmental Science, Bachelor of Science with a Concentration in Analytical Sciences (http://catalog.unomaha.edu/undergraduate/college-arts-sciences/environmental-studies/environmental-sciences-environmental-studies-bs-analytical-sciences-concentration/)
• Environmental Science, Bachelor of Science with a Concentration in Earth Sciences (http://catalog.unomaha.edu/undergraduate/college-arts-sciences/environmental-studies/environmental-sciences-environmental-studies-bs-earth-sciences-concentration/)
• Environmental Science, Bachelor of Science with a Concentration in Geography and Planning (http://catalog.unomaha.edu/undergraduate/college-arts-sciences/environmental-studies/environmental-sciences-environmental-studies-bs-geography-and-planning-concentration/)
• Environmental Science, Bachelor of Science with a Concentration in Life Sciences (http://catalog.unomaha.edu/undergraduate/college-arts-sciences/environmental-studies/environmental-sciences-environmental-studies-bs-life-sciences-concentration/)

Writing in the Discipline
See concentrations.

Hour Requirements
To obtain a BS in Environmental Sciences, a student must fulfill university, college, and departmental requirements. As an interdisciplinary major, Environmental Sciences meets the college breadth requirement without the addition of a minor or additional General Education courses. Other hour requirements follow:

1. 46 hours of University General Education courses - Environmental Sciences majors who work with their advisor to select courses do not complete 46 hours of coursework solely for the purpose of meeting university General Education requirements. Instead, they select courses to ensure that they:
 • Take six hours of coursework that meets both the six hours of diversity requirements and six hours of distribution requirements,
 • Meet the three-hour University General Education mathematics requirement through completing statistics as part of their major courses,
 • Meet the seven-hour University General Education natural sciences distribution requirement through completing major courses.
 By doing so, the number of credit hours taken solely to meet General Education requirements is reduced to 30 or fewer.

2. Minimum of 69-80 hours of major courses depending on the concentration selected.

3. 10 - 21 hours of electives. Total elective credit is determined by the General Education courses taken, concentration selected, and the selection of courses used to fulfill major requirements.

TOTAL HOURS: 120
The Life Sciences concentration is designed to prepare a student for jobs as environmental biologists protecting natural ecosystems and promoting a healthy environment. Some career options include:

- Environmental educator
- Natural Resource Manager
- Environmental and Public Health Specialist
- Geospatial Information Systems technician
- Restoration Ecologist
- Soil and Water Conservationist
- Sustainability Coordinator
- Wildlife & Fisheries Biologist

Environmental Science – Life Sciences concentration

The life sciences concentration is designed to prepare a student for jobs as environmental biologists protecting natural ecosystems and promoting a healthy environment. Some career options include:

- Air and Water quality scientist
- City and Regional Planning aide
- Conservation Biologist
- Environmental consultant

Environmental Science – Analytical Sciences concentration

The analytical sciences concentration is designed to produce environmental scientists with a strong background in chemistry preparing them to find solutions to problems associated with chemical pollutants that are being released into the air, earth and water environments of our planet.

Environmental Science – Earth Sciences concentration

The earth sciences concentration is designed to prepare students for a career in environmental geology, working on land, soil, and water conservation.

Environmental Science – Geography and Planning concentration

The geography and planning concentration is designed to produce local and regional planning specialists who understand the best approaches for preventing environmental problems.

Environmental Science – Life Sciences concentration

The life sciences concentration is designed to prepare a student for jobs as environmental biologists protecting natural ecosystems and promoting a healthy environment.

Minors Offered

- Environmental Science Minor
- Environmental and Public Health Minor
- Geospatial Information Systems Minor
- Environmental Education Minor
- Natural Resource Management Minor
- Soil and Water Conservation Minor
- Sustainability and Environmental Change Minor

The Environmental and Public Health Minor is designed to produce a student who understands the need for a multidisciplinary approach to solving environmental and public health problems. Some career options include:

- Environmental consultant
- Public Health Educator
- Public Health Administrator
ENVN 4310 OUR ENERGY FUTURE: SOCIETY, THE ENVIRONMENT AND SUSTAINABILITY (3 credits)
In this course, students will analyze our energy options including the environmental, economic, and ethical connections with a particular emphasis on electrical energy. The course doesn't prescribe a particular energy future but rather emphasizes development of the knowledge and skills to more effectively contribute to the conversation. To understand our future, the course begins with the present energy landscape and its historical underpinnings, then focuses on developing a student's ability to critically assess energy options by examining the associated implications, consequences, intent, origins, and bias. Students' own work, life, and academic experience are used in the course to underscore the individual relevance of these energy choices. The course includes the necessary science, but the greater emphasis is on the associated critical and creative thinking so that ultimately students can make informed, creative, sustainable energy choices. (Cross-listed with ENVN 8336).
Prerequisite(s)/Corequisite(s): Permission of instructor.

ENVN 4320 ECOLOGICAL SUSTAINABILITY AND HUMAN HEALTH (3 credits)
The course will explore and develop the complex context of the systemic links among ecosystems and human health (and more broadly human well-being) using case studies including climate change, water quality, infectious diseases and agricultural production. Students will develop skills in critical thinking and applied research by studying biological connections between humans and ecosystems and how social, economic and cultural processes and practices mediate these connections. This course supports the Health and the Environment concentration in the Master of Arts in Critical and Creative Thinking. (Cross-listed with CACT 8326)
Prerequisite(s)/Corequisite(s): Junior or Senior standing

ENVN 4330 INTRODUCTION TO GREEN INFRASTRUCTURE (3 credits)
This course provides an overview of green infrastructure including issues managed with green infrastructure (storm water quality and quantity, urban habitat value, urban sustainability, etc.): basic design and management parameters for best management practices (BMPs); case study applications of BMPs; treatment train assessment and evaluation; and regulatory and cost considerations. (Cross-listed with ENVN 8336).
Prerequisite(s)/Corequisite(s): Junior/Senior standing or instructor permission

ENVN 4350 GLOBAL CLIMATE CHANGE (3 credits)
The primary objective of this course is for students to form a scientific, evidence-based, stance on current and future changes to the Earth's climate. To this end, this course will be based on scientific inquiry into the current state of knowledge. Particular emphases are placed on evidence and causes of change, and the associated environmental and social impacts, including: water resources, extreme weather, human health, and others of interest to the class. (Cross-listed with GEGO 8356, GEGO 4350, ENVN 8356).
Prerequisite(s)/Corequisite(s): At least 1 of the following: GEGO 1030, GEGO 1050, GEGO 3510, GEGO 4320, or permission of instructor

ENVN 4410 WETLAND ECOLOGY AND MANAGEMENT (3 credits)
This course will examine the principles and theory of wetland ecology with application towards wetland management and regulation. An interdisciplinary overview of physical, biological and regulatory aspects of wetlands will allow students to synthesize information from their backgrounds in geography, geology and ecology. Definitions, classifications, natural processes and functions of wetland environments will be presented. Labs concentrate on field techniques used to assess specific plant, animal, soil, and hydrological characteristics of wetlands. (Cross-listed with BIOL 4410 and BIOL 8416)
Prerequisite(s)/Corequisite(s): BIOL 3340 or instructor permission.

ENVN 4420 RESTORATION ECOLOGY (3 credits)
Restoration Ecology examines how people assist with the recovery of ecosystems that have been degraded. The course will examine the theory and application of restoration ecology through lecture, discussion, field trips, and development of a restoration management plan for a degraded ecosystem near Omaha. The course will provide information and resources used by restoration and land management professionals to plan, implement, and manage restorations. (Cross-listed with BIOL 4420, BIOL 8426)
Prerequisite(s)/Corequisite(s): Junior or Senior standing.

ENVN 4460 GIS APPLICATIONS FOR ENVIRONMENTAL SCIENCE (1 credit)
This course introduces the use of geographic information systems (GIS) and other geospatial tools for work in the fields of environmental science, ecology, and natural resource management. The course will develop a working knowledge of the common software and hardware tools used by ecologists through hands-on projects. (Cross-listed with BIOL 4600, BIOL 8606)
Prerequisite(s)/Corequisite(s): BIOL 3340 or permission of instructor.

ENVN 4461 ENVIRONMENTAL MONITORING AND ASSESSMENT (3 credits)
An interdisciplinary approach to techniques for the design and implementation of environmental inventory and monitoring schemes used to evaluate natural resources. Students work as teams to synthesize information from their backgrounds in geography, geology and ecology to evaluate the impacts of human actions on environmental quality following the framework for environmental assessments provided by the National Environmental Policy Act. Course is organized to accommodate variable needs of students with different backgrounds and career choices. Usually offered every year. (Cross-listed with BIOL 4610, GEGO 4610, GEGO 8616, GEGO 4610, GEOL 8616)
Prerequisite(s)/Corequisite(s): Permission of instructor.

ENVN 4700 SUSTAINABLE SOLUTIONS CAPSTONE (3 credits)
This is a capstone experience for students interested in sustainability and related fields. Students work as part of a multidisciplinary team under the guidance of faculty mentors to develop sustainable solutions to challenges faced by local, regional, or global organizations.
Prerequisite(s)/Corequisite(s): Instructor permission.

ENVN 4800 INTERNSHIP IN ENVIRONMENTAL MANAGEMENT AND PLANNING (1-3 credits)
Internship providing practical experience working with environmental organizations or government agencies for students interested in careers in environmental science and related fields. A proposed internship must be approved by the Environmental Studies Program prior to enrolling. Usually offered Fall, Spring, Summer. (Cross-listed with BIOL 4800)
Prerequisite(s)/Corequisite(s): Permission of the Environmental Studies Program.

ENVN 4820 INTRODUCTION TO ENVIRONMENTAL LAW & REGULATIONS (3 credits)
An introduction to environmental law and regulations intended for students pursuing careers in environmental sciences or related fields. The course emphasizes the origins, implementation, and enforcement of U.S. state and federal laws and regulations. Major federal environmental laws, covering air and water quality, solid and hazardous waste, pollution prevention and remediation, and natural resources will be discussed. Usually offered Fall semesters. (Cross-listed with ENVN 8826, BIOL 4820, GEGO 4820, GEGO 8826, PA 8826)
Prerequisite(s)/Corequisite(s): Junior-senior or permission of the instructor.
ENVN 4970 ADVANCED BOTANY (4 credits)
Advanced Botany examines plant structures (cells, tissues, and organs) and their connections with plant functions (growth, reproduction, photosynthesis, respiration, and dispersal). Topics covered include energy metabolism, development and morphogenesis, genetics, ecology, and the latest in plant taxonomy and phylogeny, keeping students on the forefront of cutting-edge botanical research. In lab, students conduct activities such as dissecting plant organs, making microscope slides, and conducting plant-based experiments, using plants from the local area, from native Great Plains collections, and from around the world and grown in the greenhouse. Students compare and contrast both physiological and morphological adaptations to varying environments. (Cross-listed with BIOL 8976, BIOL 4970).

Prerequisite(s)/Corequisite(s): BIOL 1750 and junior or senior student status or above or instructor permission.