COMPUTER SCIENCE, BACHELOR OF SCIENCE

The Bachelor of Science in Computer Science provides students with a solid background in the fundamentals of computing and prepares them for employment in a wide variety of positions and for graduate study in computer science. The content of the department’s courses is continually monitored to ensure they are consistent with fast-changing developments in the discipline. Courses are offered in the day, evening, and some online sections for the convenience of our students. Appropriate university and departmental computing resources are available to students taking computer science courses.

Student Group

The Association of Computer Machinery (ACM) (https://www.acm.org/) is a major force in advancing the skills of information technology professionals and students worldwide, providing the industry’s leading portal to computing literature and more. The College of Information Science & Technology has two student chapters: UNO ACM and UNO ACM-W.

Fast Track

The department of Computer Science has developed a Fast Track program for highly qualified and motivated students providing the opportunity to complete a bachelor’s degree and a master’s degree in an accelerated time frame. With Fast Track, students may count up to 9 graduate credit hours towards the completion of their undergraduate program as well as the graduate degree program. Students will work with both undergraduate and graduate advisors to ensure graduate classes selected will count toward both programs, should a student wish to earn a graduate degree in a separate College of Information Science & Technology (CIST) area than their undergraduate degree.

Program Specifics:

• This program is available for undergraduate students pursuing any CIST undergraduate degree desiring to pursue an MS in either the same or a related CIST field.
• Students must have completed no less than 60 undergraduate hours.
• Students must have a minimum undergraduate GPA of 3.0.
• Students must complete the Fast Track Approval form and obtain all signatures and submit to the Office of Graduate Studies prior to first enrollment in a graduate course.
• Students will work with their undergraduate advisor to register for the graduate courses.
• A minimum cumulative GPA of 3.0 is required for graduate coursework to remain in good standing.
• Students remain undergraduates until they meet all the requirements for the undergraduate degree and are eligible for all rights and privileges granted undergraduate status including financial aid.
• Near the end of the undergraduate program, formal application to the graduate program is required. All applicants will need to meet any other admission requirements established for the MS in selected CIST program. The application fee will be waived if the applicant contacts the Office of Graduate Studies for a fee waiver code prior to submitting the MS application.
 • Admission to Fast Track does NOT guarantee admission to the graduate program.
 • The admit term must be after the completion term of the undergraduate degree.

Computer Science, Bachelor of Science in Computer Science Requirements

A minimum of 120 credit hours is required for a Bachelor of Science degree in Computer Science. Thirty of the last 36 hours must be University of Nebraska at Omaha courses. Registering for courses without having taken the stated prerequisites could result in administrative withdrawal. Students must have a C or better grade in CIST 1400 and CSCI 1620 to serve as the prerequisite for all subsequent Computer Science (CSCI) courses. For all other courses applied towards the major, a grade of C- or better will meet the prerequisite and degree requirements.

To obtain a computer science degree, a student must fulfill the University General Education, College, and Departmental requirements. Some courses may satisfy requirements in more than one area, but credit is awarded only once, thereby reducing the total number of credit hours for the degree to 120. (This total does not include prerequisites.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education Requirements - 46 Hours Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum of "C"-required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundamental Academic Skills</td>
<td>15</td>
</tr>
<tr>
<td>ENGL 1150</td>
<td>ENGLISH COMPOSITION I</td>
<td></td>
</tr>
<tr>
<td>ENGL 1160</td>
<td>ENGLISH COMPOSITION II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Writing in the Discipline</td>
<td></td>
</tr>
<tr>
<td>CMST 1110</td>
<td>PUBLIC SPEAKING FUNDS</td>
<td></td>
</tr>
<tr>
<td>or CMST 2120</td>
<td>ARGUMENTATION AND DEBATE</td>
<td></td>
</tr>
<tr>
<td>MATH 1120</td>
<td>INTRODUCTION TO MATHEMATICAL AND COMPUTATIONAL THINKING</td>
<td></td>
</tr>
<tr>
<td>or MATH 1100</td>
<td>DATA LITERACY AND VISUALIZATION</td>
<td></td>
</tr>
<tr>
<td>or MATH 1130</td>
<td>QUANTITATIVE LITERACY</td>
<td></td>
</tr>
<tr>
<td>or MATH 1140</td>
<td>QUANTITATIVE REASONING FOR HEALTHCARE PROFESSIONALS</td>
<td></td>
</tr>
<tr>
<td>or MATH 1300</td>
<td>COLLEGE ALGEBRA WITH SUPPORT</td>
<td></td>
</tr>
<tr>
<td>or STAT 1100</td>
<td>DATA LITERACY AND VISUALIZATION</td>
<td></td>
</tr>
<tr>
<td>or STAT 1530</td>
<td>ELEMENTARY STATISTICS</td>
<td></td>
</tr>
<tr>
<td>Distribution Requirements</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Natural Science - From two disciplines and at least one lab - 7 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science - From two disciplines - 9 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities and Fine Arts - From two disciplines - 9 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Diversity - 3 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Diversity - 3 hrs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJOR REQUIREMENTS - 91 Hours Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course will satisfy UNO’s General Education requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course requires pre-requisite(s)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All of the following:</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>CIST 1400</td>
<td>INTRODUCTION TO COMPUTER SCIENCE I (*)</td>
<td></td>
</tr>
<tr>
<td>CSCI 1620</td>
<td>INTRODUCTION TO COMPUTER SCIENCE II (*)</td>
<td></td>
</tr>
<tr>
<td>CIST 2100</td>
<td>ORGANIZATIONS, APPLICATIONS AND TECHNOLOGY (*)</td>
<td></td>
</tr>
<tr>
<td>CSCI 2240</td>
<td>INTRODUCTION TO C PROGRAMMING (*)</td>
<td></td>
</tr>
<tr>
<td>CIST 3000</td>
<td>ADVANCED COMPOSITION FOR IS&T (*)</td>
<td></td>
</tr>
<tr>
<td>CIST 3110</td>
<td>INFORMATION TECHNOLOGY ETHICS (*)</td>
<td></td>
</tr>
</tbody>
</table>
2 Computer Science, Bachelor of Science

CSCI 3320 Data Structures (*)
CSCI 3550 Communication Networks (*)
CSCI 3660 Theory of Computation (*)
CSCI 3710 Introduction to Digital Design and Computer Organization (*)
CSCI 4100 Introduction to Algorithms (*)
CSCI 4220 Principles of Programming Languages (*)
CSCI 4350 Computer Architecture (*)
CSCI 4500 Operating Systems (*)
CSCI 4830 Introduction Software Engineering (*)
CSCI 4970 Capstone Project (*)
CSCI 4000 Assessment (*)

Extension Courses – Complete 21 credit hours*
21
At least 12 hours of upper-division Computer Science Courses (CSCI 3XXX+)
Up to 9 hours can be at the lower-division, including MATH 1960, MATH 1970, or any other course from 2XXX to 4XXX level from CSCI, BIOI, CYBR, ISQA, ITIN, ECEN, or MATH
*18 extension hours can be satisfied by completing an optional concentration.

Math Courses - All of the following: 15
MATH 1950 Calculus I (** *)
CSCI 2030 Mathematical Foundations of Computer Science (*)
CSCI 2040 Introduction to Mathematical Proofs (*)
MATH 2050 Applied Linear Algebra (*)
CIST 2500 Introduction to Applied Statistics for IS&T (*)

Science Courses - Complete 7 credit hours from the following list, representing at least 2 disciplines with a minimum of 1 laboratory course**
PHYS 1050 Introduction to Physics (**)
PHYS 1054 Introduction to Physics Laboratory (**)
PHYS 1110 General Physics I (***)
PHYS 1154 General Physics Laboratory I (***)
PHYS 2110 General Physics I - Calculus Level (***)
CHEM 1010 Chemistry in the Environment and Society (***)
CHEM 1014 Chemistry in the Environment and Society Laboratory (***)
CHEM 1140 Fundamentals of College Chemistry (***)
CHEM 1144 Fundamentals of College Chemistry Laboratory (***)
CHEM 1170 General Chemistry II (***)
CHEM 1180 General Chemistry I (***)
CHEM 1184 General Chemistry I Laboratory (***)
BIOL 1450 Biology I (***)
BMCH 2400 Human Physiology & Anatomy I (***)
GEOL 1100 Introduction to Physical Geology (***)
GEOL 1104 Earth System Science Lab (***)

GEOG 1030 Our Dynamic Planet: Introduction to Physical Geography (***)
GEOG 1050 Human-Environment Geography (***)
GEOG 1090 Introduction to Geospatial Sciences (***)
GEOG 3510 Meteorology (***)
GEOG 3514 Introduction to Meteorology Laboratory (***)

ELECTIVES
Elective hours as required to reach a total of 120 hours

Computer Science Elective Concentrations
- Artificial Intelligence Concentration (http://catalog.unomaha.edu/undergraduate/college-information-science-technology/computer-science/computer-science-bs/artificialintelligence-concentration/)
- Game Programming Concentration (http://catalog.unomaha.edu/undergraduate/college-information-science-technology/computer-science/computer-science-bs/game-programming-concentration/)
- Internet Technologies (IT) Concentration for Computer Science Majors (http://catalog.unomaha.edu/undergraduate/college-information-science-technology/computer-science/computer-science-bs/internet-technologies-it-concentration-computer-science-majors/)
- Information Assurance Concentration (http://catalog.unomaha.edu/undergraduate/college-information-science-technology/computer-science/computer-science-bs/information-assurance-concentration/)
- Software Engineering Concentration (http://catalog.unomaha.edu/undergraduate/college-information-science-technology/computer-science/computer-science-bs/software-engineering-concentration/)

Computer Science, Bachelor of Science in Computer Science Four Year Plan - Start 1300-1200-1280

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1150</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>CMST 1110</td>
<td>Public Speaking Funds or Argumentation and Debate</td>
<td>3</td>
</tr>
<tr>
<td>CIST 1300</td>
<td>Introduction to Web Development</td>
<td>3</td>
</tr>
<tr>
<td>or CSCI 1200 or CSCI 1280</td>
<td>or Computer Science Principles or Introduction to Computational Science</td>
<td></td>
</tr>
<tr>
<td>MATH 1950</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th>Fall</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1160</td>
<td>English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>CIST 1400</td>
<td>Introduction to Computer Science I</td>
<td>3</td>
</tr>
<tr>
<td>US Diversity/Social Science Requirement</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Natural/Physical Science Requirement with Lab</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
Second Year
Fall
- **CSCI 1620**: Introduction to Computer Science II (3)
- **CSCI 2030**: Mathematical Foundations of Computer Science (3)
- **CSCI 2040**: Introduction to Mathematical Proofs (1)
- **CIST 2100**: Organizations, Applications and Technology (3)
- **CIST 3110**: Information Technology Ethics (3)

Natural/Physical Sciences Requirement (3)

Credits: 16

Spring
- **CIST 2500**: Introduction to Applied Statistics for IS&T (3)
- **CSCI 2240**: Introduction to C Programming (3)
- **CSCI 3320**: Data Structures (3)
- **Extension/Concentration Course**: (3)
- **Social Sciences Requirement**: (3)

Credits: 15

Third Year
Fall
- **MATH 2050**: Applied Linear Algebra (3)
- **CIST 3000**: Advanced Composition for IS&T (3)
- **CSCI 3710**: Introduction to Digital Design and Computer Organization (3)
- **Extension/Concentration Course**: (3)
- **Humanities & Fine Arts Requirement**: (3)

Credits: 15

Spring
- **CSCI 3550**: Communication Networks (3)
- **CSCI 3660**: Theory of Computation (3)
- **CSCI 4100**: Introduction to Algorithms (3)
- **CSCI 4350**: Computer Architecture (3)
- **Global Diversity/Humanities & Fine Arts Requirement**: (3)

Credits: 15

Fourth Year
Fall
- **CSCI 4220**: Principles of Programming Languages (3)
- **CSCI 4500**: Operating Systems (3)
- **CSCI 4830**: Introduction to Software Engineering (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)

Credits: 15

Spring
- **CSCI 4000**: Assessment (0)
- **CSCI 4970**: Capstone Project (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)
- **Free Elective**: (3)

Credits: 15

Total Credits: 120

Computer Science, Bachelor of Science in Computer Science

Four Year Plan - Start 1400

First Year
Fall
- **ENGL 1150**: English Composition I (3)
- **CMST 1110 or CMST 2120**: Public Speaking Funds or Argumentation and Debate (3)
- **CIST 1400**: Introduction to Computer Science I (3)
- **MATH 1950**: Calculus I (3)
- **Free Elective**: (1)

Credits: 15

Spring
- **ENGL 1160**: English Composition II (3)
- **CSCI 1620**: Introduction to Computer Science II (3)
- **US Diversity/Social Science Requirement**: (3)
- **Natural/Physical Sciences Requirement with Lab**: (4)
- **Free Elective**: (1)

Credits: 14

Second Year
Fall
- **CSCI 2240**: Introduction to C Programming (3)
- **CSCI 2030**: Mathematical Foundations of Computer Science (3)
- **CSCI 2040**: Introduction to Mathematical Proofs (1)
- **CIST 2100**: Organizations, Applications and Technology (3)
- **CIST 3110**: Information Technology Ethics (3)

Natural/Physical Sciences Requirement (3)

Credits: 16

Spring
- **CSCI 2500**: Introduction to Applied Statistics for IS&T (3)
- **CSCI 3320**: Data Structures (3)
- **Social Sciences Requirement**: (3)
- **Free Elective**: (3)

Credits: 15

Third Year
Fall
- **CIST 3000**: Advanced Composition for IS&T (3)
- **CSCI 3710**: Introduction to Digital Design and Computer Organization (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)
- **Humanities & Fine Arts Requirement**: (3)

Credits: 15

Spring
- **CSCI 3550**: Communication Networks (3)
- **CSCI 3660**: Theory of Computation (3)
- **CSCI 4100**: Introduction to Algorithms (3)
- **CSCI 4350**: Computer Architecture (3)
- **Global Diversity/Humanities & Fine Arts Requirement**: (3)

Credits: 16

Fourth Year
Fall
- **CSCI 4220**: Principles of Programming Languages (3)
- **CSCI 4500**: Operating Systems (3)
- **CSCI 4830**: Introduction to Software Engineering (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)

Credits: 15

Spring
- **CSCI 4000**: Assessment (0)
- **CSCI 4970**: Capstone Project (3)
- **Extension/Concentration Course**: (3)
- **Extension/Concentration Course**: (3)
- **Humanities & Fine Arts Requirement**: (3)

Credits: 15

Spring
- **CSCI 3550**: Communication Networks (3)
- **CSCI 3660**: Theory of Computation (3)
- **CSCI 4100**: Introduction to Algorithms (3)
- **CSCI 4350**: Computer Architecture (3)

Credits: 15

Total Credits: 120
<table>
<thead>
<tr>
<th>Global Diversity/Humanities & Fine Arts Requirement</th>
<th>3</th>
</tr>
</thead>
</table>

Credits 15

Fourth Year

Fall

<table>
<thead>
<tr>
<th>CSCI 4220</th>
<th>PRINCIPLES OF PROGRAMMING LANGUAGES</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 4500</td>
<td>OPERATING SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>CSCI 4830</td>
<td>INTRODUCTION SOFTWARE ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>Extension/Concentration Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extension/Concentration Course</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Credits 15 |

Spring

<table>
<thead>
<tr>
<th>CSCI 4000</th>
<th>ASSESSMENT</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 4970</td>
<td>CAPSTONE PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>Extension/Concentration Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extension/Concentration Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Extension/Concentration Course</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Credits 15 |

| Total Credits 120 |

1 MATH 1950 - Satisfies General Education Quantitative Literacy requirement

This roadmap is a suggested plan of study and does not replace meeting with an advisor. Please note that students may need to adjust the actual sequence of courses based on course availability. Please consult an advisor in your major program for further guidance.

This plan is not a contract and curriculum is subject to change.

Additional Information About this Plan:

University Degree Requirements: The minimum number of hours for a UNO undergraduate degree is 120 credit hours. Please review the requirements for your specific degree program to determine all requirements for the program. In order to graduate on time (four years for an undergraduate degree), you need to take 30 credit hours each year.

Placement Exams: For Math, English, and Foreign Languages, a placement exam may be required. More information on these exams can be found at https://www.unomaha.edu/enrollment-management/testing-center/placement-exams/information.php

Please note that transfer credit or placement exam scores may change a suggested plan of study.