BIOINFORMATICS (BIOI)

BIOI 1000 INTRODUCTION TO BIOINFORMATICS (3 credits)
Bioinformatics is a scientific discipline that integrates mathematical and computational techniques with biological knowledge to develop and use computational tools to extract, organize and interpret information from genetic sequence data. The field is growing rapidly with the advancement in molecular technology to sequence the genomes of many different organisms. This course will provide an introduction to the field and will examine some of the problems of interest to bioinformaticians and how these relate to biology, computer science, mathematics and engineering. Topics will include an overview of the biology, mathematics and computer science needed to understand these and tools.
Distribution: Natural/Physical Science General Education course

BIOI 2000 FOUNDATIONS OF BIOINFORMATICS (3 credits)
Bioinformatics is a new scientific discipline that integrates mathematical and computational techniques with biological knowledge to develop and use computational tools to extract, organize and interpret information from genetic sequence data. The field is growing quickly due to rapid advances in sequencing and other biological techniques that allow the genomes of different organisms to be easily sequenced. This course provides an overview of the field and covers the chemical, biological, mathematical and computational foundations of bioinformatics upon which later courses will depend. In addition, it introduces problems of interest to bioinformaticians and the methods and tools used to address them.
Prerequisite(s)/Corequisite(s): BIOI 1000 or BIOL 1450

BIOI 3000 APPLIED BIOINFORMATICS (3 credits)
This course will provide students with the practical skills needed for the analysis of -omics data. Topics covered will include biological databases, molecular biology tools (e.g., primer design, contig assembly), gene prediction and mining, database searches, genome comparison, sequence alignments, phylogenetic inference, gene expression data analyses, functional annotation of protein sequences, protein structure and modeling, and SwissPDBviewer will be illustrated. Multiple approaches for solving particular problems will be presented.
Prerequisite(s)/Corequisite(s): BIOI 1000, BIOI 1450, and CIST 1400; or permission.

BIOI 3500 ADVANCED BIOINFORMATICS PROGRAMMING (3 credits)
Because of the volume and complexity of biological data, advanced programming skills are required for researchers in order to get the most out of their data analyses. This course will provide the expanded programming skills necessary to develop software that can exploit the complex information landscape of bioinformatics. Specific topics covered will include molecular biology basics, Unix/Linux shell programming, Perl and BioPerl, databases and using the Perl DBI, and data visualization.
Prerequisite(s)/Corequisite(s): BIOI 1000 and CSCI 1620. CSCI 3320 and an introductory course in biology (e.g., Biology 1450) are strongly recommended but not required.

BIOI 4500 INDEPENDENT STUDY (1-3 credits)
This course allows students to research a topic of their interest that is not available in a formal course. The topic to be studied must be agreed upon by the student and the instructor.
Prerequisite(s)/Corequisite(s): Junior or Senior within the Bioinformatics undergraduate program. Not open to non-degree graduate students.

BIOI 4510 BIOINFORMATICS INTERNSHIP (1-3 credits)
The purpose of this course is to provide the students with an opportunity for practical application and further development of knowledge and skills acquired in the Bioinformatics undergraduate program. The internship gives students professional work experience and exposure to the challenges and opportunities faced by IT professionals in the workplace.
Prerequisite(s)/Corequisite(s): Junior/Senior standing and permission of Director of the School of Interdisciplinary Informatics. Not open to non-degree graduate students.

BIOI 4860 BIOINFORMATICS ALGORITHMS (3 credits)
The main objective of this course is to provide an organized forum for students to learn recent developments in Bioinformatics, particularly, from the algorithmic standpoint. The course will present basic algorithmic concepts in Bioinformatics and show how they are connected to molecular biology and biotechnology. Standard topics in the field such as restriction mapping, motif finding, sequence comparison, and database search will be covered. The course will also address problems related to Bioinformatics like next generation sequencing, DNA arrays, genome rearrangements and biological networks. (Cross-listed with BMI 8866).
Prerequisite(s)/Corequisite(s): CSCI 3320 and BIOI 1450; Or permission of instructor.

BIOI 4870 DATABASE SEARCH AND PATTERN DISCOVERY IN BIOINFORMATICS (3 credits)
This required course for undergraduate bioinformatics majors provides foundational knowledge on database aspects used in the field and an overview of their applications in bioinformatics, biomedical informatics, and health/clinical informatics. The course begins with a brief review of key concepts in computational molecular biology related to database search/development, database management systems, the difference between primary and secondary databases, and bioinformatics-related aspects of modeling and theory in computer science. The major focus is on the multiple challenges and aspects of bio-database development, search, and pattern discovery. The course uses problem-based learning to help students develop database management skills as they apply to high throughput ‐omics ‐ data, the basics of data management, data provenance and governance, standards, and analysis through KDD-based workflows. This course will also consider the fundamentals of artificial intelligence and machine learning as they pertain to bioinformatics, from the perspective of database storage, I/O, and analysis. (Cross-listed with CSCI 8876).
Prerequisite(s)/Corequisite(s): CSCI 4850 or permission of instructor. Not open to non-degree graduate students.

BIOI 4890 COMPUTERIZED GENETIC SEQUENCE ANALYSIS (3 credits)
The goal of this course is to introduce students to major topics in computerized analysis of genetic sequences. In particular the class will allow students to become familiar with the computational tools and software that aid in the modern molecular biology experiments and analysis of experimental results. Following the completion of this course, it is expected that the students will have a basic understanding of the theoretical foundations of the sequence analysis tools and develop competence in evaluating the output from these tools in a biological context. This course will emphasize hands-on experience with the programs for nucleotide and amino acid sequence analysis and molecular phylogeny.
Prerequisite(s)/Corequisite(s): Junior or senior-level standing in the Bioinformatics program or permission from the instructor. Not open to nondegree students.

BIOI 4950 SPECIAL TOPICS IN BIOINFORMATICS (3 credits)
This course is intended to provide a mechanism for offering instruction in subject areas that are not covered in other regularly scheduled courses. In general, courses offered under the BIOI 4950 designation will focus on evolving subject areas in bioinformatics.
Prerequisite(s)/Corequisite(s): Prerequisites of a specific offering of BIOI 4950 will be determined by the supervising faculty member and identified in the course proposal. It is anticipated that permission of the faculty member teaching the course will be required for registration.
BIOI 4970 SENIOR PROJECT IN BIOINFORMATICS I (1 credit)
This course is the first part of a two-part series that allows students to work on a guided research project on a specific topic in bioinformatics. The goal of this course is for the student to decide on a research topic and to write a detailed proposal based on this topic that outlines the goals and objectives of the proposed research. The topic and proposal will be approved by the supervising faculty member.
Prerequisite(s)/Corequisite(s): Senior level status in the Bioinformatics program. Not open to nondegree students.

BIOI 4980 SENIOR PROJECT IN BIOINFORMATICS II (2 credits)
This course is the second part of a two-part series that allows the student to work on a guided research project on a specific topic in bioinformatics. The goal of this course is for the student to perform the research proposed in Part I of the course and to present the results of his or her work. Presentations will be made in the form of a report, written as a scientific research paper, and an oral defense.
Prerequisite(s)/Corequisite(s): Senior-level standing in the Bioinformatics program and successful completion of BIOI 4970. Not open to nondegree students.

BIOI 4990 INDEPENDENT STUDY IN BIOINFORMATICS (1-3 credits)
This is a variable-credit course designed for the junior or senior bioinformatics major who would benefit from independent reading assignments and research-type problems. Independent study enables coverage of topics not taught in scheduled course offerings.
Prerequisite(s)/Corequisite(s): Junior/senior standing, permission of supervising faculty member & approval of Bioinformatics UG Prog Comm Chair. A formal description of the problem area to be investigated, the resources to be used, & the results to be produced must be prepared.